INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X, October 2024
www.ijltemas.in Page 179
.
that converges to the exact solution
References
1. Wazwaz A. (2011) Linear and Nonlinear Integral Equation (Methods and Applications), High Education Press, Beijing
and Springer- Verlag Berlin Heidelberg.,
2. Adomian, G. (1989) Nonlinear Stochastic Systems Theory and Applications to Physics,, Kluwer Academic, Dordrecht.
3. Kanwal, R. (1997) Linear Integral equations, Birkhauser.
4. Micula, S. (2020) A Numerical method for weakly singular Nonlinear Volterra Integral Equation of the second kind,
MDPI, Symmetry, 12. https://doi.org/10.3390/sym12111862.
5. Kreyszig, E. (1978) Introductory Functional Analysis with Applications, Wiley, New York.
6. Wolfgang von Goethe, J. (2018) Normed spaces...Vector spaces, Semantic scholar.org.
7. Kartsatos, A. G. 2005) Advanced Ordinary Differential Equations, Springer Monographs in Mathematics, Hindawi
Publishing Corporation. New York.
8. Atkinson, K. and Han, W. (2009) Theoretical Numerical Analysis. A Functional Analysis Framework, Springer
Science+ Business Media. New York.
9. Coddington, E. A. (1989) An Introduction to Ordinary Differential Equations, Dover. Canada.
10. Michael Steele J. (2004) The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities
(Maa Problem Books Series.), Cambridge University Press. Canada.
11. Lepage, W. R. (1980) Complex variables and the Laplace Transform form for Engineers , 3rd ed, Dovers. Canada.
12. Bence, S. J. Hobson, M. P. and Riley, K. F. (2006) mathematical methods for Physics and Engineering, 3rd ed,
Cambridge University Press. Cambridge; New York,
13. Agoshkov, V. I. and Dobovski, P. B. (2000) Methods of Integral Transforms, institute of Numerical Mathematics.
Russian Academy of Sciences. Moscow,
14. Abaoub, A. and Shkheam, A. (2020) The new integral transform (Abaoub- Shkheam transform), IAETSD JOURNAL
FOR ADVANCED RESEARCH IN APPLIED SCIENCES, VII, 08–13.
15. Abaoub, A. and Shkheam, A. (2020) Utilization Abaoub-Shkheam transform in solving the Linear integral equation of
Volterra, International journal of software and Hardware Research in Engineering(IJSHRE), 8, 771–831.
https://doi.org/10.1002/cpa.3160350604.
16. Shkheam, A. and Abaoub, A. and Huwaydi, Y. (2021) Exact Solution of Linear Volterra integro-differential Equation of
First Kind Using Abaoub-Shkheam Transform, International Journal of Research and Innovation in Applied Science
(IJRIAS), 6, 60–64. https: //rsisinternational.org/ .
17. Mubayrash, A. and Zali , S. and alkawash, Z. (2021) The Use of Abaoub- Shkheam Transform for Solving Partial
Differential Equations, alqurtas, 20, 67–74. https://alqurtas.alandalus-libya.org.ly/ojs/index. php/qjhar/article/view/619.
18. Elbhilil, N. and Bnis , M. and Altirban, A. (2021) Abaoub -Shkheam Transform Techniques to Solve Volterra Integral
and Volterra Integro Differential Equations, African Journal of Advanced Pure and Applied Sciences (AJAPAS), 2,
254–260. Website:https://aaasjournals. com/index. Php/ajapas/index.
19. Mubayrash, A. (2022) Solving the partial Differential Equations Using the Modified Abaoub-Shkheam Adomian
Decomposition Method, alqurtas. alandalus, 21, 70–83. Website:https://alqurtas. alandalus-libya.org.ly/ojs/index.
Php/qjhar/article/view/687
20. Zali, S. (2023) Application of Abaoub-Shkheam Transform for Solving Linear Partial Integro – Differential Equation,
Arab Journal of Sciences and Research Publishing (AJSRP), 19, 101–108. https://journals.ajsrp. com/index. Php/ajsrp
21. Adomian, G. (1994) Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic, Dordrecht.
22. Al-Hayani, W. and Casasus, L. (2005) The Adomian decomposition method in turning point problems, Journal of
Computational and Applied Mathematics, 177, 187–203. doi:10.1016/j.cam.2004.09.016.
23. Mahmood, A. and Casas´us, L. and Al-Hayani, W. (2005) The decomposition method for stiff systems of ordinary
differential equations, Applied Mathematics and Computation, 167, 964–975. DOI: 10.1016/j.physleta.2006.04.071.
24. Mahmood, A. and Casas´us, L. (2006) Analysis of resonant oscillators with the Adomian decomposition method,
Physics Letters A, 357, 306– 313.DOI:10.1016/j.physleta.2006.04.071.
25. Zhu, H. and Shu, H. and Ding, M.(2010) Numerical solutions of twodimensional Burgers’ equations by discrete
Adomian decomposition method, Computers and Mathematics with Applications, 60, 840–848.
.DOI:10.1016/j.camwa.2010.05.031.