INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X, October 2024
www.ijltemas.in Page 173
A Novel Approach to Nonlinear Volterra-Fredholm Integral
Equations Using Abaoub Shkheam Decomposition Method
Ali E. Abaoub
1
, Abejela S. Shkheam
2
, Khireya A. Alkeweldy
3
1,2
Mathematical Department, Essential School of Science, Libyan Academy of Postgraduate, Tripoli Libya
3
Mathematical Department, Faculty of Science, Zintan University, Zintan-Libya
doi.org/10.51583/IJLTEMAS.2024.131021https://DOI :
Received: 24 October 2024; Accepted: 03 November 2024; Published: 17 November 2024
Abstract: In this study, we introduce a novel approach to the solution of a nonlinear Volterra -Fredholm integral equations by
applying the Adomian decomposition method under the effect of the Abaoub- Shkheam transform. We demonstrate the existence
and uniqueness of the solution in Banach space and illustrate this idea with an example.
Keywords: Abaoub Shkheam-Transform, Volterra- Integral Equations, Fredholm, Integral Equations
I. Introduction
We examine a Volterra Fredholm integral equations of second kind that is nonlinear, given by
󰇛
󰇜
󰇛
󰇜
󰇛
󰇜
󰇛
󰇜

󰇛
󰇜
󰇛
󰇜


󰇛
󰇜
where 󰇛󰇜 is the unknown function that will be determined,
󰇛
󰇜
and the function 󰇛󰇜 are given real-valued
functions. The functions
󰇛
󰇜
are given nonlinear functions of u, λ is the parameter, a and b are constants.
In 2020, Abaoub and Shkheam introduced a novel integral transform known as the Abaoub Shkheam transform [14], which they
utilized to address linear Volterra integral equations [15]. The following year, Shkheam and collaborators used the Abaoub
Shkheam trans form to solve the Linear Volterra Integro-Differential Equation of the First Kind [16]. In 2022, Asmaa Mubayrash
applied this transform to solve partial differential equations [19], and in 2022 Asma Mubayrash and her colleagues using this
transform for Solving Partial Differential Equations [17]. Building on this work, in 2023, Suad Zali employed the transform to
tackle linear partial integro-differential equations [20], while Nagah Elbhilil and colleagues used it to solve Volterra Integral and
Volterra Integro-Differential Equations [18].
The Adomian Decomposition Method (ADM) is a brand-new, extremely powerful method that Adomian [2],[21] first presented
in the early 1980s for solving a wide range of equations, including integral, differential, partial differential, and linear and non-
linear algebraic equations [22]-[31]. The solution series has shown to rapidly converge using this strategy. The non-linear term is
broken down into a set of specialized polynomials known as Adomian’s polynomials in order for it to function. Our main goal in
this paper is to solve non-linear Volterra Fredholm integral equations by using the Combined Aboub Shkheam Transform-
Adomian Decomposition Method.
The Abaoub Shkheam Decomposition Method
The nonlinear Volterra-Fredholm integral equation with difference kernels is expressed as follows:
󰇛
󰇜
󰇛
󰇜
󰇛
󰇜
󰇛
󰇜

󰇛
󰇜
󰇛
󰇜


󰇛
󰇜
Abaoub Shkheam transform method can solves the nonlinear Volterra-Fredholm integro differential equation (2). We utilize the
Abaoub Shkheam transform on bothe sides of (2) we get
󰇟
󰇛
󰇜󰇠
󰇟
󰇛
󰇜󰇠

󰇩
󰇛
󰇜
󰇛
󰇜

󰇪

󰇩
󰇛
󰇜
󰇛
󰇜

󰇪

󰇛
󰇜
using convolution theorem of the Q-Transform in (3), we obtain
󰇟
󰇛
󰇜󰇠
󰇟
󰇛
󰇜󰇠

󰇟
󰇛
󰇜󰇠
󰇛
󰇜


󰇟
󰇛
󰇜󰇠
󰇛
󰇜


󰇛
󰇜
The Adomian decomposition method, along with Adomian polynomials, can be employed to tackle equation (4) and address the
nonlinear term
󰇛
󰇜
. Initially, we represent the linear term
󰇛
󰇜
on the left side as an infinite series of components,
given by:
INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X, October 2024
www.ijltemas.in Page 174
󰇛
󰇜
󰇛
󰇜


󰇛
󰇜
where the components
󰇛
󰇜
will be determined recursively. However, the nonlinear terms
󰇛
󰇜
and
󰇛
󰇜
on the
right side of equation (4) will be expressed as infinite series involving Adomian polynomials
󰇛
󰇜
and
󰇛
󰇜
, respectively, in the
following form:

󰇛
󰇜
󰇛
󰇜


󰇛
󰇜
󰇛
󰇜


󰇛󰇜
where

, are defined by
󰇛
󰇜

󰇯



󰇰


󰇛󰇜

󰇯



󰇰

where the Adomian polynomials
can be computed for various forms of nonlinearity. Specifically, for a given nonlinear
function
󰇛
󰇜
, the Adomian polynomials are defined as follows:
󰇛
󰇜
󰆒
󰇛
󰇜
󰆒
󰇛
󰇜


󰆒󰆒
󰇛
󰇜
󰆒
󰇛
󰇜
󰆒󰆒
󰇛
󰇜


󰆒󰆒󰆒
󰇛
󰇜
󰆒
󰇛
󰇜

󰆒󰆒
󰇛
󰇜


󰆒󰆒󰆒
󰇛
󰇜


󰇛

󰇜
󰇛
󰇜
Similarly, We can evaluated the Adomian polynomials
of the nonlinear function
󰇛
󰇜
as following
󰇛
󰇜
󰆒
󰇛
󰇜
󰆒
󰇛
󰇜


󰆒󰆒
󰇛
󰇜
󰆒
󰇛
󰇜
󰆒󰆒
󰇛
󰇜


󰆒󰆒󰆒
󰇛
󰇜
󰆒
󰇛
󰇜


󰆒󰆒
󰇛
󰇜


󰆒󰆒󰆒
󰇛
󰇜


󰇛

󰇜
󰇛
󰇜
Substituting equation (5) and equation (6) into equation (4) leads to:
󰇛
󰇜

󰇟
󰇛󰇜
󰇠

󰇟
󰇛
󰇜󰇠
󰇛
󰇜


󰇟
󰇛󰇜
󰇠
󰇛󰇜

The recursive relation is presented by using the Adomian decomposition method
󰇟
󰇛󰇜
󰇠
󰇟
󰇛󰇜
󰇠

󰇟

󰇛
󰇜󰇠

󰇟
󰇛
󰇜󰇠
󰇛
󰇜


󰇟
󰇛󰇜
󰇠
󰇛󰇜


󰇛
󰇜
When the first part of equation (7) is applied with the inverse Abaoub-Shkheam transform,
󰇛
󰇜
is obtained. Determine
󰇛
󰇜
and
󰇛
󰇜
yields
󰇛󰇜
󰇛󰇜 is used to evaluate
󰇛
󰇜
and so on. This leads to the complete determination of the
components of
󰇛󰇜,n 0 upon applying the second part of Eq. (7). The series solution follows immediately after applying Eq.
(5). The obtained series solution may converge to an exact solution, if such a solution exists.
INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X, October 2024
www.ijltemas.in Page 175
Existence and Uniqueness Analysis of Solutions
We shall introduce and prove the results regarding the existence and uniqueness of solution to Equation (2). In order to prove
these results, we first present the suitable hypotheses.
󰇛
󰇜
󰇛
󰇜
in a neighborhood of , and for any n (the derivatives of
󰇛
󰇜
at are bounded in norm);
󰇛
󰇜
󰇛
󰇜

󰇛
󰇜
There exists a constant such that, for any
in Banach space 󰇛󰇟󰇠
).

󰇛
󰇜
We suppose that for all  the kernels
󰇛
󰇜
 are satisfies the conditions:
󰇫
󰇛 󰇜

󰇬

󰇛
󰇜
The functions
󰇛
󰇜
satisfying the Lipschitz condition:
󰇛
󰇜
󰇛󰇜


Theorem 3.1 [ 32]
Under the previous hypotheses
󰇛
󰇜
and
󰇛
󰇜
, the series

is absolutely convergent and, furthermore
󰇭

󰇭
󰇮󰇮
󰆒

where
󰆒
is the minimal of
.
Theorem 3.2 (Existence and Uniqueness)
Suppose that
󰇛
󰇜
󰇛
󰇜
󰇛
󰇜

󰇛
󰇜
hold. If  where
󰇛
󰇜
and
󰇛
󰇜
Then there exists a unique solution
󰇛
󰇜
󰇛󰇟󰇠
󰇜 to Eq.(2).
Proof:
By using the Adomian decomposition method, we get
󰇛
󰇜
󰇛
󰇜

λ
󰇛
󰇜
󰇛
󰇜

 λ
󰇛
󰇜
󰇛
󰇜


󰇛󰇜󰇛󰇜

󰇛
󰇜
󰇛
󰇜

󰇛
󰇜

󰇛 󰇜

󰇛󰇜

󰇛
󰇜
taking the norm of equation (8), yields
󰇛󰇜
󰈆
󰇛
󰇜

󰇛
󰇜

󰈆
󰈆
󰇛
󰇜

󰇛
󰇜

󰈆
λ
󰇫
󰇛
󰇜

󰇛
󰇜

󰇬
λ
󰇫
󰇛
󰇜

󰇛
󰇜

󰇬
utilizing the Cauchy- Schwarz inequality, we get

󰇛
󰇜
λ
󰇫
󰇛
󰇜

󰇬
󰇫

󰇛
󰇜

󰇬

INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X, October 2024
www.ijltemas.in Page 176

󰇫
󰇛
󰇜

󰇬
󰇫

󰇛
󰇜

󰇬

󰇫
󰇛
󰇜

󰇬

󰇛
󰇜
󰇫
󰇛
󰇜

󰇬

󰇛
󰇜

Now by using hypotheses (
), (
), (
) and the theorem (3.1), we get
󰇛
󰇜
󰇭

󰇭
󰇛
󰇜
󰇮󰇮


󰇭
󰇛
󰇜
󰇮




󰇭
󰇛
󰇜
󰇮

Since then


󰇛
󰇜
Under the aforementioned condition (9), the bound ensures that the infinite series
󰇛
󰇜

converges uniformly. Consequently,
the function
󰇛
󰇜
can be expressed as
:
󰇛
󰇜
󰇛
󰇜

Since each
󰇛
󰇜
is continuous,
󰇛
󰇜
inherits this property, demonstrating that
󰇛
󰇜
is continuous and convergent. This confirms
the existence of a solution to Equation (2).
Now, we shall prove the uniqueness solution, suppose that Eq. (2) has two solutions
󰇛
󰇜
and 󰇛󰇜. Applying the norm on both
sides of Eq.(2), we obtain
󰇛
󰇜
󰇛
󰇜

󰇛
󰇜
󰇟
󰇛
󰇜
󰇛󰇛󰇜󰇜󰇠
󰈐
󰇛
󰇜
󰇛
󰇜
󰇛
󰇜


󰈐
󰇫
󰇛
󰇜󰇟
󰇛
󰇜
󰇛
󰇜󰇠

󰇬

󰇫
󰇛
󰇜󰇟
󰇛
󰇜
󰇛
󰇜󰇠

󰇬
By Cauchy-Schwarz inequality and Using hypotheses (
), (
) and (
), we have
󰇛󰇜 󰇛󰇜

󰇫
󰇛 󰇜

󰇬
󰇫
󰇛
󰇜
󰇛
󰇜

󰇬


󰇫
󰇛
󰇜

󰇬
󰇫
󰇛
󰇜
󰇛󰇜

󰇬

󰇛
󰇜
󰇛
󰇜
󰇛
󰇜
󰇛
󰇜
We apply the Lipschitz condition

󰇛󰇜 󰇛󰇜

󰇟
󰇠

󰇛󰇜 󰇛󰇜
󰇛
󰇜
󰇛
󰇜

hence
󰇛

󰇜
󰇛
󰇜
󰇛
󰇜

Since  this implies that
󰇛
󰇜
󰇛
󰇜
INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X, October 2024
www.ijltemas.in Page 177
Theorem 3.3 (Convergence).
Assume that (
), and (
), then the series solution (5) of the equation (2) converges to the exact solution provided
󰇛󰇜
 and 0 1.
Proof
Let 󰇛
󰇟

󰇠
) denote the Banach space of all continuous real-valued functions defined on
󰇟

󰇠
. Consider the sequence of
partial sums
defined by:
󰇛󰇜

which represents the partial sums of the series solution (5).Since

󰇛󰇜

󰇛
󰇜



󰇛󰇜

󰇛
󰇜

So,
󰇛
󰇜

󰇛
󰇜

󰇛
󰇜
󰇛
󰇜


󰇛󰇜
Let
and
be arbitrary partial sums with, then
󰇩
󰇛 󰇜

󰇛󰇜

󰇛 󰇜

󰇛󰇜
󰇪


󰇛 󰇜
󰇛󰇜



󰇛 󰇜
󰇛󰇜



from (10), we have



󰇛 󰇜
󰇟
󰇛

󰇜
󰇛

󰇜
󰇠

󰇫
󰇛 󰇜
󰇟
󰇛

󰇜
󰇛

󰇜
󰇠

󰇬

󰇫
󰇛
󰇜

󰇬
󰇫
󰇛

󰇜
󰇛

󰇜

󰇬
󰇫
󰇛
󰇜

󰇬
󰇫
󰇛

󰇜
󰇛

󰇜

󰇬

󰇟
󰇠






󰇛󰇜
Let , then




and since





󰇟

󰇠

󰇛󰇜
Since 0  then
INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X, October 2024
www.ijltemas.in Page 178

󰇛󰇜
But
 so, as  then

We conclude that
󰇝
󰇞
is a Cauchy sequence in Banach space, the convergence of the sequence is equivalent to the convergence
of the series.
4. Applications:
An examination of the following example demonstrates the Abaoub Shkheam decomposition method for solving the nonlinear
Volterra Fredholm equations.
Example. Consider the 
the nonlinear Volterra-Fredholm integro differential equation of the second kind
󰇛
󰇜


󰇛󰇜
󰇛
󰇜

󰇛󰇜
󰇛
󰇜

󰇛

󰇜
Taking the -ttransform of both sides of the equation (14) gives
󰇟
󰇛
󰇜󰇠


󰇛
 
󰇜
󰇟

󰇛
󰇜󰇠

󰇟

󰇛
󰇜󰇠



󰇛
 
󰇜


󰇟
󰇛
󰇜󰇠


󰇟
󰇛
󰇜󰇠

󰇛

󰇜
Utilized the Adomian decomposition method to both sides of the equation (15), gives:
󰇛
󰇜



󰇛
 
󰇜


󰇛
󰇜



󰇛
󰇜

The Adomian decomposition method presents the recursive relation:
󰇟
󰇛
󰇜󰇠


󰇛
 
󰇜

󰇝

󰇛
󰇜󰇞


󰇛
󰇜



󰇛
󰇜

󰇛󰇜
where
󰇛
󰇜
and
󰇛
󰇜
are the Adomian polynomials for the nonlinear term
󰇛
󰇜
and
󰇛󰇜, respectively. The Adomian
polynomials for
󰇛
󰇜
󰇛
󰇜
and
󰇛
󰇜
󰇛
󰇜
are given by:
󰇛
󰇜

󰆒
󰇛
󰇜

󰆒
󰇛
󰇜

󰆒󰆒
󰇛
󰇜


󰇛
󰇜

󰆒
󰇛
󰇜

󰆒
󰇛
󰇜

󰆒󰆒
󰇛
󰇜


Substituting in Eq.(16), we obtain



󰇝
󰇛
󰇜󰇞


󰇟
󰇛
󰇜󰇠


󰇟
󰇛
󰇜󰇠
INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X, October 2024
www.ijltemas.in Page 179
󰇛
󰇜

󰇥


󰇟

󰇠


󰇟
󰇠
󰇦
󰇛
󰇜

󰇥


󰇟
󰇛



󰇜
󰇠


󰇟
󰇛



󰇜
󰇠
󰇦
󰇛
󰇜


󰇛


󰇜


󰇡




󰇢

󰇡
󰇢
.
that converges to the exact solution
󰇛
󰇜
References
1. Wazwaz A. (2011) Linear and Nonlinear Integral Equation (Methods and Applications), High Education Press, Beijing
and Springer- Verlag Berlin Heidelberg.,
2. Adomian, G. (1989) Nonlinear Stochastic Systems Theory and Applications to Physics,, Kluwer Academic, Dordrecht.
3. Kanwal, R. (1997) Linear Integral equations, Birkhauser.
4. Micula, S. (2020) A Numerical method for weakly singular Nonlinear Volterra Integral Equation of the second kind,
MDPI, Symmetry, 12. https://doi.org/10.3390/sym12111862.
5. Kreyszig, E. (1978) Introductory Functional Analysis with Applications, Wiley, New York.
6. Wolfgang von Goethe, J. (2018) Normed spaces...Vector spaces, Semantic scholar.org.
7. Kartsatos, A. G. 2005) Advanced Ordinary Differential Equations, Springer Monographs in Mathematics, Hindawi
Publishing Corporation. New York.
8. Atkinson, K. and Han, W. (2009) Theoretical Numerical Analysis. A Functional Analysis Framework, Springer
Science+ Business Media. New York.
9. Coddington, E. A. (1989) An Introduction to Ordinary Differential Equations, Dover. Canada.
10. Michael Steele J. (2004) The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities
(Maa Problem Books Series.), Cambridge University Press. Canada.
11. Lepage, W. R. (1980) Complex variables and the Laplace Transform form for Engineers , 3rd ed, Dovers. Canada.
12. Bence, S. J. Hobson, M. P. and Riley, K. F. (2006) mathematical methods for Physics and Engineering, 3rd ed,
Cambridge University Press. Cambridge; New York,
13. Agoshkov, V. I. and Dobovski, P. B. (2000) Methods of Integral Transforms, institute of Numerical Mathematics.
Russian Academy of Sciences. Moscow,
14. Abaoub, A. and Shkheam, A. (2020) The new integral transform (Abaoub- Shkheam transform), IAETSD JOURNAL
FOR ADVANCED RESEARCH IN APPLIED SCIENCES, VII, 0813.
15. Abaoub, A. and Shkheam, A. (2020) Utilization Abaoub-Shkheam transform in solving the Linear integral equation of
Volterra, International journal of software and Hardware Research in Engineering(IJSHRE), 8, 771831.
https://doi.org/10.1002/cpa.3160350604.
16. Shkheam, A. and Abaoub, A. and Huwaydi, Y. (2021) Exact Solution of Linear Volterra integro-differential Equation of
First Kind Using Abaoub-Shkheam Transform, International Journal of Research and Innovation in Applied Science
(IJRIAS), 6, 6064. https: //rsisinternational.org/ .
17. Mubayrash, A. and Zali , S. and alkawash, Z. (2021) The Use of Abaoub- Shkheam Transform for Solving Partial
Differential Equations, alqurtas, 20, 6774. https://alqurtas.alandalus-libya.org.ly/ojs/index. php/qjhar/article/view/619.
18. Elbhilil, N. and Bnis , M. and Altirban, A. (2021) Abaoub -Shkheam Transform Techniques to Solve Volterra Integral
and Volterra Integro Differential Equations, African Journal of Advanced Pure and Applied Sciences (AJAPAS), 2,
254260. Website:https://aaasjournals. com/index. Php/ajapas/index.
19. Mubayrash, A. (2022) Solving the partial Differential Equations Using the Modified Abaoub-Shkheam Adomian
Decomposition Method, alqurtas. alandalus, 21, 7083. Website:https://alqurtas. alandalus-libya.org.ly/ojs/index.
Php/qjhar/article/view/687
20. Zali, S. (2023) Application of Abaoub-Shkheam Transform for Solving Linear Partial Integro Differential Equation,
Arab Journal of Sciences and Research Publishing (AJSRP), 19, 101108. https://journals.ajsrp. com/index. Php/ajsrp
21. Adomian, G. (1994) Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic, Dordrecht.
22. Al-Hayani, W. and Casasus, L. (2005) The Adomian decomposition method in turning point problems, Journal of
Computational and Applied Mathematics, 177, 187203. doi:10.1016/j.cam.2004.09.016.
23. Mahmood, A. and Casas´us, L. and Al-Hayani, W. (2005) The decomposition method for stiff systems of ordinary
differential equations, Applied Mathematics and Computation, 167, 964975. DOI: 10.1016/j.physleta.2006.04.071.
24. Mahmood, A. and Casas´us, L. (2006) Analysis of resonant oscillators with the Adomian decomposition method,
Physics Letters A, 357, 306 313.DOI:10.1016/j.physleta.2006.04.071.
25. Zhu, H. and Shu, H. and Ding, M.(2010) Numerical solutions of twodimensional Burgers’ equations by discrete
Adomian decomposition method, Computers and Mathematics with Applications, 60, 840848.
.DOI:10.1016/j.camwa.2010.05.031.
INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X, October 2024
www.ijltemas.in Page 180
26. Khan, Y. and Al-Hayani, W. (2013) A Nonlinear Model Arising in the Buckling Analysis and its New Analytic
Approximate Solution, Z. Naturforsch, 68, 355361. DOI:10.5560/ZNA.2013-0011.
27. Duan, J. and Chaolu, T. and Rach, R. and Lu, L. (2013) The Adomian decomposition method with convergence
acceleration techniques for nonlinear fractional differential equations, Computers and Mathematics with Application, 66,
728736. doi:10.1016/j.camwa.2013.01.019.
28. Ganji, D. and Talarposhti, R. (2018) Numerical and Analytical Solutions for Solving Nonlinear Equations in Heat
Transfer,, 728736. DOI:10.4018/978-1-5225-2713-8
29. Duan, J. and Chaolu, T.and Rach, R. and Lu, L. (2012) Solutions of the initial value problem for nonlinear fractional
ordinary differential equations by the RachAdomianMeyers modified decomposition method, International Journal of
Innovative Technology and Exploring Engineering, 218, 83708392. doi:10.1016/j.amc.2012.01.063.
30. Kaliyappan, M. and Hariharan, S. (2019) Nonlinear Differential Equations Using Adomian Decomposition Method
Through Sagemath, Applied Mathematics and Computation, 8, 510515. E3192038519/ 19BEIESP.
31. Al-Hayani, W. (2015) Adomian decomposition method with Green’s function for solving twelfth-order boundary value
problems, Applied Mathematical Sciences, 9, 353368. http://dx.doi.org/10.12988/ams. 2015.410861
32. Abbaoui, K. and Cherruault, Y. (1995) New Ideas for Proving Convergence of Decomposition Methods ), Computers
Math. Application. , 29, 103108.