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Abstract:  In this study, we introduce a novel approach to the solution of a nonlinear Volterra  -Fredholm integral equations by applying the Adomian decomposition method under the effect of the Abaoub- Shkheam transform. We demonstrate the existence and uniqueness of the solution in Banach space and illustrate this idea with an example.
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I. Introduction   

We examine a Volterra Fredholm integral equations of second kind that is nonlinear, given by 𝑥

𝑏

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘 (

(

1 𝑥, 𝑡)𝐹1(𝑢(𝑡))𝑑𝑡  + 𝜆 ∫ 𝑘2 𝑥, 𝑡)𝐹2(𝑢(𝑡))𝑑𝑡,                                              (1) 𝑎

𝑎

where  𝑢(𝑥)  is  the  unknown  function  that  will  be  determined,  𝑘 (

𝑖 𝑥, 𝑡), 𝑖 = 1,2,   and  the  function  𝑓(𝑥)  are  given  real-valued functions. The functions 𝐹 (

𝑖 𝑢) are given nonlinear functions of  u, λ is the parameter,  a and  b are constants.

In 2020, Abaoub and Shkheam introduced a novel integral transform known as the Abaoub Shkheam transform [14], which they utilized  to  address  linear  Volterra  integral  equations  [15].  The  following  year,  Shkheam  and  collaborators  used  the  Abaoub Shkheam  trans form to solve the Linear Volterra Integro-Differential Equation of the First Kind [16]. In 2022, Asmaa Mubayrash applied  this  transform  to  solve  partial  differential  equations  [19],  and  in  2022  Asma  Mubayrash  and  her  colleagues  using  this transform  for  Solving  Partial  Differential  Equations  [17].  Building  on this  work,  in 2023,  Suad  Zali  employed  the  transform  to tackle linear partial integro-differential equations [20], while Nagah Elbhilil and colleagues used it to solve Volterra Integral and Volterra Integro-Differential Equations [18].

The Adomian Decomposition Method (ADM) is a brand-new, extremely powerful method that Adomian [2],[21] first presented in the early 1980s for solving a wide range of equations, including integral, differential, partial differential, and linear  and nonlinear algebraic equations [22]-[31]. The solution series has shown to rapidly converge using this strategy. The non-linear term is broken down into a set of specialized polynomials known as Adomian’s polynomials in order for it to function. Our main goal in this  paper  is  to  solve  non-linear  Volterra  Fredholm  integral  equations  by  using  the  Combined  Aboub  Shkheam  Transform-Adomian Decomposition Method.


The Abaoub Shkheam Decomposition Method 

The nonlinear Volterra-Fredholm integral equation with difference kernels is expressed as follows: 𝑥

𝑏

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘 (

(

1 𝑥 − 𝑡)𝐹1(𝑢(𝑡))𝑑𝑡  + 𝜆 ∫ 𝑘2 𝑥 − 𝑡)𝐹2(𝑢(𝑡))𝑑𝑡,                                       (2) 𝑎

𝑎

Abaoub Shkheam transform method can solves the nonlinear Volterra-Fredholm integro differential equation (2). We utilize the Abaoub Shkheam transform on bothe sides of (2) we get

𝑥

𝑏

𝑄[𝑢(𝑥)] = 𝑄[𝑓(𝑥)] + 𝜆𝑄 [∫ 𝑘 (

(

1 𝑥 − 𝑡)𝐹1(𝑢(𝑡))𝑑𝑡] + 𝜆𝑄 [∫ 𝑘2 𝑥 − 𝑡)𝐹2(𝑢(𝑡))𝑑𝑡 ]             (3) 𝑎

𝑎

using convolution theorem of the Q-Transform in (3), we obtain 

𝑄[𝑢(𝑥)] = 𝑄[𝑓(𝑥)] + 𝜆𝑣𝑄[𝑘 (

(

1 𝑥)]𝑄[𝐹1(𝑢(𝑥))] + 𝜆𝑣𝑄[𝑘2 𝑥)]𝑄[𝐹2(𝑢(𝑥))]                                (4) 

The Adomian decomposition method, along with Adomian polynomials, can be employed to tackle equation (4) and address the nonlinear term 𝐹𝑖 (𝑢(𝑡)), 𝑖 = 1,2. Initially, we represent the linear term 𝑢(𝑥) on the left side as an infinite series of components, given by:
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∞

𝑢(𝑥) = ∑ 𝑢 (

𝑛 𝑥)                                                                                                                                          (5) 𝑛=0

where the components 𝑢 (

𝑛 𝑥), 𝑛 ≥ 0 will be determined recursively. However, the nonlinear terms 𝐹1(𝑢(𝑡)) and 𝐹2(𝑢(𝑡)) on the right side of equation (4) will be expressed as infinite series involving Adomian polynomials 𝐴 (

(

𝑛 𝑡) and 𝐵𝑛 𝑡), respectively, in the

following form:

∞

∞

𝐹 (

(

(

(

1 𝑢) =   ∑ 𝐴𝑛 𝑡) ,                𝐹2 𝑢) =   ∑ 𝐵𝑛 𝑡),                                                                             (6) 𝑛=0

𝑛=0

where 𝐴𝑛 and 𝐵𝑛, 𝑛 ≥ 0 are defined by

𝑛

𝑛

1 𝑑𝑛

1 𝑑𝑛

𝐴 (

𝑛 𝑡) =

[

[𝐹

)]]

,     𝐵

[

[𝐹

)]]

. 

𝑛! 𝑑𝜆𝑛

1 (∑ 𝜆𝑖𝑢𝑖

𝑛 (𝑡) = 𝑛! 𝑑𝜆𝑛 2 (∑ 𝜆𝑖𝑢𝑖

𝑖=0

𝑖=0

𝜆=0

𝜆=0

where  the  Adomian  polynomials  𝐴𝑛  can  be  computed  for  various  forms  of  nonlinearity.  Specifically,  for  a  given  nonlinear function 𝐹1(𝑢(𝑡)), the Adomian polynomials are defined as follows: 𝐴

(

)

0 = 𝐹1 𝑢0

𝐴

′

1 = 𝑢1𝐹1 (𝑢0)

1

𝐴

′

2

′′

2 = 𝑢2𝐹1 (𝑢0) +

𝑢 𝐹 (𝑢

2! 1 1

0)

1

𝐴

′( )

′′( )

3

′′′

3 = 𝑢3𝐹1

𝑢0 + 𝑢1𝑢2𝐹1 𝑢0 +

𝑢 𝐹

(𝑢

3! 1 1

0)

1

1

1

𝐴

′

2

′′( )

2

′′′( )

4

(𝑖𝑣)( )

4 = 𝑢4𝐹1 (𝑢0) + (

𝑢

+ 𝑢

𝑢   +

𝑢 𝑢

𝑢

+

𝑢 𝐹

𝑢 .

2! 2

1𝑢3) 𝐹1

0

2! 1 2𝐹1

0

4! 1 1

0

Similarly, We can evaluated the Adomian polynomials  𝐵𝑛 of the  nonlinear function  𝐹2(𝑢(𝑥)) as following 𝐵

(

)

0 = 𝐹2 𝑢0

𝐵

′

1 = 𝑢1𝐹2 (𝑢0)

1

𝐵

′

2

′′

2 = 𝑢2𝐹2 (𝑢0) +

𝑢 𝐹 (𝑢

2! 1 2

0)

1

𝐵

′( )

′′( )

3

′′′

3 = 𝑢3𝐹2

𝑢0 + 𝑢1𝑢2𝐹2 𝑢0 +

𝑢 𝐹

(𝑢

3! 1 2

0)

1

1

1

𝐵

′

2

′′( )

2

′′′( )

4

(𝑖𝑣)( )

4 = 𝑢4𝐹2 (𝑢0) + (

𝑢 + 𝑢

𝑢

+

𝑢 𝑢

𝑢

+

𝑢 𝐹

𝑢 .

2! 2

1𝑢3) 𝐹2

0

2! 1 2𝐹2

0

4! 1 2

0

Substituting equation (5) and equation (6) into equation (4) leads to:

∞

∞

∞

𝑄 [∑ 𝑢 (

(

(

𝑛 𝑥)]   = 𝑄[𝑓(𝑥)] + 𝜆𝑣𝑄[𝑘1 𝑥)]𝑄 [∑ 𝐴𝑛 𝑡)] + 𝜆𝑣𝑄[𝑘2(𝑥)]𝑄 [∑ 𝐵𝑛 (𝑡)].

𝑛=0

𝑛=0

𝑛=0

The recursive relation is presented by using the Adomian decomposition method 𝑄[𝑢0(𝑥)] = 𝑄[𝑓(𝑥)]

∞

∞

{

(7)

𝑄[𝑢

(

(

(

𝑛+1 𝑥)] = 𝜆𝑣𝑄[𝑘1 𝑥)]𝑄 [∑ 𝐴𝑛 𝑡)] + 𝜆𝑣𝑄[𝑘2(𝑥)]𝑄 [∑ 𝐵𝑛 (𝑡)]

𝑛=0

𝑛=0

When the first part of equation (7) is applied with the inverse Abaoub-Shkheam transform, 𝑢 (

(

0 𝑥)  is  obtained.  Determine 𝑢0 𝑥)

and  𝑢 (

(

1 𝑥)    yields  𝐴1(𝑥)and 𝐵1(𝑥)  is  used  to  evaluate  𝑢2 𝑥)  and  so  on.  This  leads  to  the  complete  determination  of  the components of 𝑢𝑛(𝑥),n ≥ 0 upon applying the second part of Eq. (7). The series solution follows immediately after applying Eq.

(5). The obtained series solution may converge to an exact solution, if such a solution exists.
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Existence and Uniqueness Analysis of Solutions

We  shall introduce  and  prove  the results regarding  the  existence  and  uniqueness  of  solution  to  Equation  (2).  In  order to  prove these results, we first present the suitable hypotheses.

(𝑯 )

(

(

𝟏    𝐹𝑗 𝑢) ∈ 𝐶 ∞in a neighborhood of 𝑢, and for any  n (the derivatives of 𝐹𝑗 𝑢) at 𝑢 are bounded in norm);

‖𝐹 (𝑛)(

𝑗

𝑢)‖ ≤   𝑀𝑗,

𝑗 = 1,2.

(𝑯 )

𝟐   There exists a constant 𝑀  < 1  such that, for any 𝑢𝑖 in Banach space 𝐶([𝑎, 𝑏] ‖. ‖).

‖𝑢 ‖

𝑖

≤ 𝑀, 𝑖 = 1,2, …

(𝑯 )

(

𝟑   We suppose that for all 𝑎  ≤ 𝑡  ≤ 𝑥  ≤ 𝑏 the kernels 𝑘𝑗 𝑥 − 𝑡), 𝑗 = 1,2 are satisfies the conditions: 1

𝑥

2

2

{∫ |𝑘𝑗(𝑥 − 𝑡)| 𝑑𝑡}     <   𝐶𝑗.

𝑎

(𝑯 )

(

𝟒   The functions 𝐹𝑗 𝑢), satisfying the Lipschitz condition:

‖𝐹 (

‖

𝑗 𝑢) − 𝐹𝑗 (𝑣)‖   ≤   𝐿𝑗 𝑢 − 𝑣‖,  𝐿𝑗 > 0, 𝑗 = 1,2.

 Theorem 3.1 [ 32] 

Under the previous hypotheses (𝑯 )

)

∞

𝟏 and (𝑯𝟐 , the series ∑

𝐴

𝑛=0

𝑛 is absolutely convergent and, furthermore 

2

‖𝐴 ‖

𝑛

≤ (exp (𝜋√ 𝑛)) 𝑀′𝑀𝑛 ,

3

where 𝑀′ is the minimal of 𝑀𝑗.

 

Theorem 3.2 ( Existence and Uniqueness) Suppose that (𝑯 )

)

)

)

𝟏 , (𝑯𝟐 , (𝑯𝟑 , and (𝑯𝟒  hold. If  0 < 𝛼, 𝛽 < 1, where 𝛼 = |𝜆|(𝐶

)

1𝑀1 + 𝐶2𝑀2 ,

and

𝛽 = |𝜆|(𝐶

)

1𝐿1 + 𝐶2𝐿2 .

Then there exists a unique solution 𝑢(𝑥) ∈ 𝐶 ([𝑎, 𝑏], ‖. ‖) to Eq.(2).

Proof:

By using the Adomian decomposition method, we get

∞

∞

∞

𝑥

𝑏

∑ 𝑢 (

λ

(

(

(

(

𝑛 𝑥) = 𝑓(𝑥) +

∫ [𝑘1 𝑥 − 𝑡) ∑ 𝐴𝑛 𝑡)] 𝑑𝑡 + λ ∫ [𝑘2 𝑥 − 𝑡) ∑ 𝐵𝑛 𝑡)] 𝑑𝑡.

𝑛=0

𝑎

𝑛=0

𝑎

𝑛=0

𝑢

 

0(𝑥) = 𝑓(𝑥)

𝑥

𝑏

(8) 

𝑢 (

(

(

𝑛  𝑥) = 𝜆 ∫ 𝑘1 𝑥 − 𝑡)𝐴𝑛−1 𝑡)𝑑𝑡 + 𝜆 ∫ 𝑘2(𝑥 − 𝑡)𝐵𝑛−1(𝑡)𝑑𝑡 , 𝑛 ≥ 1

{

𝑎

𝑎

taking the norm of equation (8), yields

𝑥

𝑏

‖𝑢

(

(

(

(

𝑛 (𝑥)‖ ≤ |𝜆| ‖∫ 𝑘1 𝑥 − 𝑡)𝐴𝑛−1 𝑡)𝑑𝑡‖ + |𝜆| ‖∫ 𝑘2 𝑥 − 𝑡)𝐵𝑛−1 𝑡)𝑑𝑡‖

𝑎

𝑎 1

1

𝑥

2

𝑏

2

≤ |λ| {∫ |𝑘 (

(

(

(

1 𝑥 − 𝑡)𝐴𝑛−1 𝑡)|2𝑑𝑡} + |λ| {∫ |𝑘2 𝑥 − 𝑡)𝐵𝑛−1 𝑡)|2𝑑𝑡} , 𝑎

𝑎

utilizing the Cauchy- Schwarz inequality, we get

1

1

𝑥

2

𝑏

2

‖𝑢 (

(

(

𝑛 𝑥)‖   ≤ |λ| {∫ |𝑘1 𝑥 − 𝑡)|2𝑑𝑡} {∫ |𝐴𝑛−1 𝑡)|2𝑑𝑡}

𝑎

𝑎
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1

1

𝑏

2

𝑏

2

+ |𝜆| {∫ |𝑘 (

(

2 𝑥 − 𝑡)|2𝑑𝑡} {∫ |𝐵𝑛−1 𝑡)|2𝑑𝑡}

𝑎

𝑎

1

1

𝑥

2

𝑏

2

= |𝜆| {∫ |𝑘 (

‖

(

(

‖

(

1 𝑥 − 𝑡)|2𝑑𝑡}

𝐴𝑛−1 𝑡)‖ + |𝜆| {∫ |𝑘2 𝑥 − 𝑡)|2𝑑𝑡} 𝐵𝑛−1 𝑡)‖, 𝑛 ≥ 1 .

𝑎

𝑎

Now by using hypotheses (𝑯𝟏), (𝑯𝟐), (𝑯𝟑) and the theorem (3.1), we get 2

2

‖𝑢 (

(

(

𝑛 𝑥)‖ ≤ |𝜆|𝐶1 (exp (𝜋√

𝑛 − 1))) 𝑀

𝑛 − 1))) 𝑀

3

1𝑀𝑛−1 + |𝜆|𝐶2 (𝑒𝑥𝑝 (𝜋√3

2𝑀𝑛−1

2

= 𝛼𝑀𝑛−1 𝑒𝑥𝑝 (𝜋√ (𝑛 − 1))

3

Since  0 < 𝛼 < 1, then

1

|λ| <

.                                                                                                                                (9) C1M1 + C2M2

Under the aforementioned condition (9), the bound ensures that the infinite series ∑∞ 𝑢 (

𝑛=0

𝑛 𝑥)converges uniformly. Consequently,

the function 𝑢(𝑥)can be expressed as:

∞

𝑢(𝑥) =   ∑ 𝑢 (

𝑛 𝑥).

𝑛=0

Since each 𝑢 (

𝑛 𝑥) is continuous, 𝑢(𝑥) inherits this property, demonstrating that 𝑢(𝑥) is continuous and convergent. This confirms the existence of a solution to Equation (2).

Now, we shall prove the uniqueness solution, suppose that Eq. (2) has two solutions 𝑢(𝑥), and 𝑣(𝑥). Applying the norm on both sides of Eq.(2), we obtain

𝑥

𝑏

‖𝑢(𝑥) − 𝑣(𝑥)‖ ≤ |𝜆| ‖∫ 𝑘 (

(

1 𝑥 − 𝑡)[𝐹1(𝑢(𝑡)) − 𝐹1 (𝑣(𝑡))]𝑑𝑡‖ + |𝜆| ‖∫ 𝑘2 𝑥 − 𝑡)[𝐹2(𝑢(𝑡)) − 𝐹2(𝑣(𝑡))]𝑑𝑡‖

𝑎

𝑎

1

1

𝑥

2

𝑏

2

≤ |𝜆| {∫ |𝑘 (

(

(

(

(

(

1 𝑥 − 𝑡)[𝐹1 𝑢) − 𝐹1 𝑣)]|2𝑑𝑡}                            + |𝜆| {∫ |𝑘2 𝑥 − 𝑡)[𝐹2 𝑢) − 𝐹2 𝑣)]|2 𝑑𝑡} .

𝑎

𝑎

By Cauchy-Schwarz inequality and Using hypotheses (𝑯𝟏), (𝑯𝟑) and (𝑯𝟒), we have 1

1

𝑥

2

𝑏

2

‖𝑢(𝑥) − 𝑣(𝑥)‖    ≤ |𝜆| {∫ |𝑘

(

(

1(𝑥 − 𝑡)|2𝑑𝑡}  {∫ |𝐹1 𝑢) − 𝐹1 𝑣)|2𝑑𝑡}

𝑎

𝑎

1

1

𝑏

2

𝑏

2

+|𝜆| {∫ |𝑘 (

(

2 𝑥 − 𝑡)|2𝑑𝑡}  {∫ |𝐹2 𝑢) − 𝐹2(𝑣)|2𝑑𝑡}

𝑎

𝑎

≤ |𝜆|𝐶 ‖ (

(

‖ (

(

1 𝐹1 𝑢) − 𝐹1 𝑣)‖   + |𝜆|𝐶2 𝐹2 𝑢) − 𝐹2 𝑣)‖.

We apply the Lipschitz condition

‖𝑢(𝑥) − 𝑣(𝑥)‖    ≤ |𝜆|[𝐶

]

1𝐿1 + 𝐶2𝐿2   ‖𝑢(𝑥) − 𝑣(𝑥)‖   ≤ 𝛽‖𝑢(𝑥) − 𝑣(𝑥)‖,

hence

( 𝛽 − 1)‖𝑢(𝑥) − 𝑣(𝑥)‖ ≥ 0.

Since    0 < 𝛽 < 1 this implies that 𝑢(𝑥) = 𝑣(𝑥).                                                                                        
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Theorem 3.3 ( Convergence). 

Assume that (𝑯𝟑), and (𝑯𝟒), then the series solution (5) of the equation (2) converges to the exact solution provided ‖𝑢1(𝑥)‖ <

∞, and 0 < 𝛽 < 1.


Proof  

Let  (𝐶[𝑎, 𝑏], ‖. ‖)  denote  the  Banach  space  of  all  continuous  real-valued  functions defined  on  [𝑎, 𝑏].  Consider  the  sequence  of partial sums 𝑆𝑛 defined by: 

𝑛

𝑆𝑛 = ∑ 𝑢𝑖(𝑥)

𝑖=0

which represents the partial sums of the series solution (5).Since

 

∞

∞

∞

∞

𝐹

(

(

1 (∑ 𝑢𝑖(𝑡)) =   ∑ 𝐴𝑖 𝑡) ,         𝐹2 (∑ 𝑢𝑖(𝑡)) =   ∑ 𝐵𝑖 𝑡).

𝑖=0

𝑖=0

𝑖=0

𝑖=0

So,

𝑛

𝑛

𝐹 ( )

(

( )

(

1 𝑆𝑛

= ∑ 𝐴𝑖 𝑡),       𝐹2 𝑆𝑛 =   ∑ 𝐵𝑖 𝑡).                                                                                     (10) 𝑖=0

𝑖=0

Let 𝑆𝑛 and 𝑆𝑚be arbitrary partial sums with 𝑛 ≥ 𝑚, then 𝑛

𝑥

𝑏

‖𝑆

‖

𝑛 − 𝑆𝑚

= ‖ ∑ [𝜆 ∫ 𝑘1(𝑥 − 𝑡)𝐴𝑖−1(𝑡) 𝑑𝑡  + 𝜆 ∫ 𝑘2(𝑥 − 𝑡)𝐵𝑖−1(𝑡)𝑑𝑡]‖

𝑎

𝑎

𝑖=𝑚+1

 

 

 

 

 

 

 

 

𝑛−1

𝑛−1

𝑥

𝑏

= ‖𝜆 ∫ 𝑘1(𝑥 − 𝑡) ∑ 𝐴𝑖(𝑡) 𝑑𝑡 + 𝜆 ∫ 𝑘2(𝑥 − 𝑡) ∑ 𝐵𝑖(𝑡) 𝑑𝑡‖ 

𝑎

𝑖=𝑚

𝑎

𝑖=𝑚

from (10), we have 

 

1

𝑥

2

‖𝑆

‖

𝑛 − 𝑆𝑚

≤ |𝜆| {∫|𝑘1(𝑥 − 𝑡)[𝐹1(𝑆𝑛−1) − 𝐹1(𝑆𝑚−1)]|2𝑑𝑡}

𝑎

1

𝑏

2

+|𝜆| {∫ |𝑘

(

)

2(𝑥 − 𝑡)[𝐹2 𝑆𝑛−1 − 𝐹2(𝑆𝑚−1)]|2𝑑𝑡}

𝑎

1

1

𝑥

2

𝑏

2

≤ |𝜆| {∫ |𝑘 (

(

)

(

)|2

1 𝑥 − 𝑡)|2𝑑𝑡}  {∫ |𝐹1 𝑆𝑛−1 − 𝐹1 𝑆𝑚−1

𝑑𝑡} 

𝑎

𝑎

1

1

𝑏

2

𝑏

2

+|𝜆| {∫ |𝑘 (

2 𝑥 − 𝑡)|2𝑑𝑡}  {∫ |𝐹2(𝑆𝑛−1) − 𝐹2(𝑆𝑚−1)|2𝑑𝑡} 

𝑎

𝑎

≤ [|𝜆|[𝐶

]

‖

1𝐿1 + 𝐶2𝐿2 ]‖𝑆𝑛−1 − 𝑆𝑚−1 

= 𝛽‖𝑆

‖

𝑛−1 − 𝑆𝑚−1  .                                                                               (11) Let   𝑛 = 𝑚 + 1 , then

‖𝑆

‖

‖

‖

‖

𝑚+1 − 𝑆𝑚

≤ 𝛽‖𝑆𝑚 − 𝑆𝑚−1 ≤ 𝛽2‖𝑆𝑚−1 − 𝑆𝑚−2 ≤ ⋯ ≤ 𝛽𝑚‖𝑆1 − 𝑆0

and since

‖𝑆

‖

‖

‖

‖

𝑛 − 𝑆𝑚

≤ ‖𝑆𝑚+1 − 𝑆𝑚 + ‖𝑆𝑚+2 − 𝑆𝑚+1 + ⋯ + ‖𝑆𝑛 − 𝑆𝑛−1 

1 − 𝛽𝑛−𝑚

≤ 𝛽𝑚[1 + 𝛽 + 𝛽2 + ⋯ + 𝛽𝑛−𝑚−1]‖𝑆

‖

‖

1 − 𝑆0

≤ 𝛽𝑚 (

) ‖𝑢  .    (12)

1 − 𝛽

1

Since 0< 𝛽 < 1, then
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𝛽𝑚

‖𝑆

‖

‖ ‖

𝑛 − 𝑆𝑚

≤

𝑢  .                                                                                      (13) 1 − 𝛽

1

But ‖𝑢 ‖

1

< ∞ , so, as 𝑚 → ∞ , then

‖𝑆

‖

𝑛 − 𝑆𝑚

→ 0 .

We conclude that {𝑆 }

𝑛  is a Cauchy sequence in Banach space, the convergence of the sequence is equivalent to the convergence of the series.

 

 

 



4. Applications: 

An  examination  of  the  following  example  demonstrates  the  Abaoub  Shkheam  decomposition method  for  solving the nonlinear Volterra Fredholm equations. 

Example. Consider the NVFIEs the nonlinear Volterra-Fredholm integro differential equation of the second kind 

𝑥

1

𝑢(𝑥) = 𝑒𝑥 − 𝑒2𝑥 − 𝑥 𝑒3𝑥 + ∫   𝑒3(𝑥−𝑡)𝑢3(𝑡) 𝑑𝑡 +   ∫   𝑒2(𝑥−𝑡)𝑢2(𝑡) 𝑑𝑡,                                     (14) 0

0

Taking the 𝑄-ttransform of both sides of the equation (14) gives 𝑣

𝑣

𝑢𝑣2

𝑄[𝑢(𝑥)]   =

−

−

+ 𝑄[𝑒3𝑥 ∗ 𝑢3(𝑥)] +  𝑄[𝑒2𝑥  ∗ 𝑢2(𝑥)]

1 −  𝑢 𝑣

1 − 2 𝑢 𝑣

(3𝑢𝑣 − 1 )2

𝑣

𝑣

𝑢𝑣2

𝑢𝑣

=

−

−

+

𝑄[𝑢3(𝑥)]

1 −  𝑢 𝑣

1 − 2 𝑢 𝑣

(3𝑢𝑣 − 1 )2

1 − 3𝑢 𝑣

𝑢𝑣

+

𝑄[𝑢2(𝑥)].                                                                                             (15) 1 − 2 𝑢 𝑣

Utilized the Adomian decomposition method to both sides of the equation (15), gives:

∞

∞

∞

𝑣

𝑣

𝑢𝑣2

𝑢𝑣

𝑢𝑣

𝑄 [∑ 𝑢 (

(

(

𝑛 𝑥)]   =

−

−

+

𝑄 [∑ 𝐴 𝑥)]   +

𝑄 [∑ 𝐵 𝑥)].

1 −  𝑢 𝑣

1 − 2 𝑢 𝑣

(3𝑢𝑣 − 1 )2

1 − 3𝑢𝑣

𝑛

1 − 2 𝑢𝑣

𝑛

𝑛=0

𝑛=0

𝑛=0

The Adomian decomposition method presents the recursive relation: 𝑣

𝑣

𝑢𝑣2

𝑄[𝑢 (

0 𝑥)] =

−

−

 

1 −  𝑢𝑣

1 − 2 𝑢𝑣

(3𝑢𝑣 − 1 )2

∞

∞

𝑢𝑣

𝑢𝑣

𝑄{𝑢

(

(

(

𝑛+1 𝑥)} =

𝑄 [∑ 𝐴 𝑥)] +

𝑄 [∑ 𝐵 𝑥)] , 𝑛 ≥ 0,                                  (16) 1 − 3𝑢𝑣

𝑛

1 − 2 𝑢𝑣

𝑛

𝑛=0

𝑛=0

where  𝐴 (

(

𝑛 𝑥)  and  𝐵𝑛 𝑥)  are  the  Adomian  polynomials  for  the  nonlinear  term 𝑢3(𝑥),  and  𝑢2(𝑥),  respectively.  The  Adomian polynomials for 𝐹1(𝑢(𝑥)) = 𝑢3(𝑥) and 𝐹2(𝑢(𝑥)) = 𝑢2(𝑥) are given by: 𝐴

)

3

0 = 𝐹(𝑢0

=   𝑢0,

𝐴

)

2

1 =   𝑢1𝐹′(𝑢0

= 3𝑢0𝑢1

1

𝐴

)

2

)

2

2

2 = 𝑢2𝐹′(𝑢0 +

𝑢 𝐹′′(𝑢

=  3𝑢 𝑢

,

2! 1

0

0 2 +   3𝑢0𝑢1

⋮

𝐵

)

2

0 = 𝐹(𝑢0

=   𝑢0,

𝐵

)

 

1 =   𝑢1𝐹′(𝑢0

= 2𝑢0𝑢1,

1

𝐵

)

2

)

 

2

2 = 𝑢2𝐹′(𝑢0 +

𝑢 𝐹′′(𝑢

=  2𝑢 𝑢

,

2! 1

0

0 2 +    𝑢1

⋮

Substituting in Eq.(16), we obtain

𝑢0 = 𝑒𝑥 − 𝑒2𝑥 −  𝑥𝑒3𝑥

𝑢𝑣

𝑢𝑣

𝑄{𝑢 (

(

(

1 𝑥)} =

𝑄[𝐴 𝑥)] +

𝑄[𝐵 𝑥)],

1 − 3𝑢𝑣

0

1 − 2 𝑢𝑣

0
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𝑢𝑣

𝑢𝑣

𝑢 (

3]

2]

1 𝑥) = 𝑄−1   {

𝑄[ 𝑢

+

𝑄[𝑢 }

1 − 3𝑢𝑣

0

1 − 2 𝑢𝑣

0

𝑢𝑣

𝑢𝑣

𝑢 (

1 𝑥) = 𝑄−1  {

𝑄[ (𝑒𝑥 − 𝑒2𝑥 −  𝑥𝑒3𝑥)3] +

𝑄[(𝑒𝑥 − 𝑒2𝑥 −  𝑥𝑒3𝑥)2]}

1 − 3𝑢𝑣

1 − 2 𝑢𝑣

𝑒6𝑥

58

𝑒4𝑥

𝑥2

𝑥

1

𝑢 (

1 𝑥) = 𝑥𝑒3𝑥(1 − 3𝑥𝑒4𝑥) +

(23 𝑥 − 5𝑥2 −   ) +

(𝑥3 −

+ − ).

3

9

81

3

6

2

9

9

that converges to the exact solution

𝑢(𝑥) = 𝑒𝑥.
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