INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X,October 2024
www.ijltemas.in Page 212
Approximation in Weighted Space with Generalized Max-Product
Type Favard-Szász-Mirakyan-Durrmeyer Operators
Nasan ALSATTUF, Sevilay KIRCI SERENBAY
Harran University, Institute of Science, Mathematics, Şanlıurfa, Türkiye
DOI : https://doi.org/10.51583/IJLTEMAS.2024.131025
Received: 02 November 2024; Accepted: 12 November 2024; Published: 18 November 2024
Abstract: In this paper, we explore the uniform approximation of functions using Generalized Favard- Szász-Mirakyan -
Durrmeyer operators of the max-product type with specific exponential weighted spaces. We analyze the approximation rate with
an appropriate continuity modulus.
Keywords: Durrmeyer Operators, Exponential Weighted Spaces, Maximum product operators, Approximation rate.
I. Introduction
Let be a function defined on 󰇟󰇜. The Favard- Szász-Mirakyan operators
applied to are given by
󰇛

󰇜
󰇛

󰇜
󰇛

󰇜


󰇛
󰇜
The approximation properties of Favard- Szász-Mirakyan operator have been studied by many authors; a few examples
[2],[6],[13] and [14].
󰇟󰇜 ve The Durrmeyer-type modification, as defined by Mazhar and Totik [12], is given by,
󰇛󰇜
󰇛󰇜
󰇛󰇜
󰇛
󰇜

󰇛󰇜󰇛󰇜
,
where

󰇛
󰇜
󰇛

󰇜
󰇛

󰇜
and
󰇟

󰇜
The linear structure is not always preserved or sufficient in approximation operators. Furthermore, standard algebraic operations
such as addition and subtraction may be inadequate. To address these issues, maximum-product type approximation operators
were introduced, utilizing the maximum algebraic operation. These operators are nonlinear and positive, thereby expanding the
range of tools available in approximation theory. There is extensive research in this field [1-5],[8-11].
The max-product type Favard-Szász-Mirakyan operator is defined as follows:
󰇛
󰇜
󰇛

󰇜
󰇛󰇜

󰇛
󰇜

󰇛󰇜



󰇛
󰇜
where 󰇟󰇜 and 󰇟󰇜
is considered bounded on
󰇟

󰇜
(Bede et al. [4])
Many modifications of the max-product type Favard-Szász-Mirakyan operator have been studied. The Durrmeyer generalization
of these operators has been investigated in [3] and [4] for continuous and bounded functions defined on the interval [0,1] and a
different generalization has also been explored in [5].
In this paper, we demonstrate that the operators
can be utilized for uniform approximation with the weight
󰇛󰇜
, where
󰇛󰇜
. We also examine the rate of convergence of these operators. determine the rate of convergence of these operators to
the identity operator.
Any sequence of positive linear operators can be used for the uniform approximation of functions across a wide range of weights
defined by
󰇛󰇜
, which are associated with certain operators ( [7] and [8]).
 be a function defined over a non-compact interval . This function is continuous and strictly monotonic. The
interval corresponds precisely to 󰇛󰇜. For , we denote the space of continuous functions as follows:

󰇝󰇛󰇜󰇛
󰇛󰇜
󰇛󰇜
󰇜󰇞
This space can be endowed with the norm
INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X,October 2024
www.ijltemas.in Page 213


󰇛󰇜
󰇛󰇜
.
The modulus of continuity

󰇛󰇜 is given for every

and as follows

󰇛󰇜

󰇛󰇜󰇛󰇜

󰇛
󰇜
󰇛󰇜

󰇛
󰇛󰇜
󰇛󰇜
󰇜
where the supremum is taken for all and such that
󰇛󰇜󰇛󰇛󰇜 󰇛󰇜 󰇜 󰇛󰇜.
For and
󰇛
󰇜
we get the usual modulus of continuity 󰇛󰇜, (see, [8]).
II. Auxiliary Results
In this section, we define generalized Favard-Szász-Mirakyan-Durrmeyer operators and present some supplementary results to
investigate the approximation properties of these operators.
Definition 1 󰨙󰨙󰨙󰨙
󰇟

󰇜
, an integrable function and
󰇟

󰇜
.
󰇛
󰇜
󰇛

󰇜
󰇛

󰇜


󰇛
󰇜
󰇡
󰇢

󰇛

󰇜



󰇛
󰇜

the operator is referred to as max-product type Favard-Szász-Mirakyan -Durrmeyer operator, where

󰇛
󰇜

󰇛

󰇜
󰇛󰇟󰇠).
Definition 2 󰨙󰨙󰨙󰨙
󰇟

󰇜
, an integrable function and
󰇟

󰇜
,
󰇧

󰇨
󰇛
󰇜

󰇛
󰇜



󰇛
󰇜


󰇛
󰇜


the operator defined by the above equality is referred to as the generalized max-product type Favard-Ssz-Mirakyan-Durrmeyer
Operators, where 

󰇛
󰇜
󰇛

󰇜
󰇛

󰇜
.
Lemma 1 For and
󰇛
󰇜
being a positive, increasing, and unbounded real sequence, we consider the following intervals for

󰇟


󰇜 and
󰇟




󰇛
󰇜
󰇧

󰇨
󰇛

󰇜
󰇜, .
The intervals are non-empty, disjoint, and collectively they span the positive half line.
Indeed
󰇛
󰇜
󰇧

󰇨
󰇛

󰇜

󰇧

󰇨



Lemma 2 If 
then,
󰇛
󰇜
󰇛

󰇜
󰇛

󰇜



󰇛
󰇜

󰇛

󰇜
󰇛

󰇜

.
Proof Let us denote
󰇛
󰇜


󰇛
󰇜


We get


󰇟
󰇛
󰇜
󰇧
󰇨

󰇮

INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X,October 2024
www.ijltemas.in Page 214

󰇛

󰇜

󰇛

󰇜


󰇛
󰇜
󰇛
󰇜

󰇟
󰇧
󰇨
󰇮
,

󰇛
󰇜

󰇛󰇜



󰇛
󰇜

󰇛󰇜




󰇛󰇜


󰇛󰇜


󰇛
󰇜

󰇛
󰇜



󰇟
󰇛
󰇜
󰇧

󰇨
󰇛

󰇜
,
as opposed to

󰇛
󰇜

󰇛
󰇜

󰇛
󰇜











󰇛
󰇜
󰇧

󰇨
󰇛󰇛󰇜󰇜


󰇛
󰇜

󰇛
󰇜


󰇛
󰇜
󰇛
󰇜

󰇛
󰇜
󰇛
󰇜

󰇛
󰇜
󰇛

󰇜

󰇛
󰇜



󰇛
󰇜

󰇛

󰇜



INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X,October 2024
www.ijltemas.in Page 215

.
Lemma 3 For and
󰇛
󰇜
being a positive, increasing, and unbounded real sequence, we have,
󰇧

󰇨
Proof For 
and from lemma 2,
󰇧

󰇨
󰇛
󰇜
󰇛

󰇜

󰇛

󰇜



󰇛
󰇜

󰇛

󰇜

󰇛

󰇜

󰇛
󰇜

󰇛

󰇜
󰇛

󰇜



󰇛
󰇜


󰇛

󰇜

󰇛

󰇜

Let 
, from lemma 2, for we have
󰇈
󰇛
󰇜


󰇈
󰇛
󰇜


and
󰇈
󰇛
󰇜


󰇛

󰇜

󰇛

󰇜

󰇈
󰇛
󰇜


󰇛

󰇜
󰇛

󰇜


󰇧

󰇨
󰇛
󰇜

󰇛

󰇜
󰇛

󰇜


󰇛
󰇜


󰇛

󰇜
󰇛

󰇜


󰇛
󰇜

󰇛
󰇜
󰇛
󰇜
󰇛
󰇜


󰇛
󰇜


󰇛
󰇜


󰇛
󰇜


󰇛
󰇜


󰇛
󰇜
󰇛

󰇜
󰇯

󰇧
󰇨

󰇛
󰇜
󰇧
󰇨

󰇮
and
󰇛
󰇜
󰇧

󰇨

󰇛
󰇜
,
we have
󰇛
󰇜
Using the inequality

we get ,

󰇧
󰇨

󰇧
󰇨
󰇧
󰇨
INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X,October 2024
www.ijltemas.in Page 216

󰇧

󰇨

󰇡

󰇛
󰇜
󰇢
󰇛

󰇜
󰇡

󰇢


󰇛

󰇜
.
Remark 1 We have
󰇭

󰇧

󰇨󰇮
for  and
. Indeed
󰇭

󰇧

󰇨󰇮

󰇭
󰇧

󰇨
󰇮
from Lemma 3 and
󰇧

󰇨
,
󰇭

󰇧


󰇨󰇮

󰇧
󰇨
Remark 2 For 󰇛󰇜
, for every 

for this reason

,
󰇛

󰇜
󰇛
󰇜



.
Lemma 4 For all and , the following inequality holds:
󰇛
󰇜

󰇛

󰇜

󰇛

󰇜




󰇛
󰇜


󰇛

󰇜

󰇛

󰇜

.
Proof 
 and
󰇛
󰇜

󰇛

󰇜
󰇛

󰇜

󰇛
󰇜


󰇛

󰇜

󰇛

󰇜
.
If then 
 and
because it is ,
󰇛

󰇜



󰇛

󰇜



If then 
 and
because it is ,
󰇛
󰇜

󰇛

󰇜



󰇛
󰇜


󰇛

󰇜


If then
󰇛
󰇜

󰇛

󰇜
󰇛

󰇜

and if
󰇛
󰇜


󰇛

󰇜

󰇛
󰇜

󰇛

󰇜
󰇛

󰇜

INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X,October 2024
www.ijltemas.in Page 217


󰇛
󰇜

It remains to evaluate the maximum of
, for
󰇛
󰇜
󰇛

󰇜

󰇛

󰇜


󰇛
󰇜



󰇛
󰇜



.
Let us denote 
󰇛
󰇜



, we get



󰇛
󰇜
󰇛
󰇜
for every integer
we get
by taking
 
󰇟
󰇜, and so on. Let us denote
  

We deduce that if
then 


1} for  we obtain

󰇛
󰇜

󰇛

󰇜
󰇛

󰇜



󰇛
󰇜

󰇛
󰇜

󰇛
󰇜





Lemma 5 For  and , n, there exists a
such that the following inequality holds:
󰇛
󰇜
󰇛

󰇜

󰇛

󰇜




󰇛
󰇜


󰇛

󰇜

󰇛

󰇜



Proof We have,
󰇛
󰇜

󰇛

󰇜
󰇛

󰇜

󰇛
󰇜


󰇛

󰇜

󰇛

󰇜

and 
 for ,


󰇛
󰇜

󰇛

󰇜

󰇛

󰇜




󰇛
󰇜

󰇛

󰇜

󰇛

󰇜

󰇛
󰇜
󰇛

󰇜

󰇛

󰇜



󰇛

󰇜

INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X,October 2024
www.ijltemas.in Page 218
,
󰇛
󰇜

󰇛

󰇜
󰇛

󰇜



󰇛

󰇜



For and we have



󰇛
󰇜



󰇛
󰇜

󰇛

󰇜

󰇛

󰇜




󰇛
󰇜

󰇛

󰇜

󰇛

󰇜

󰇛
󰇜
󰇛

󰇜

󰇛

󰇜
󰇛
󰇜



󰇛
󰇜


󰇛

󰇜

󰇛

󰇜

󰇛
󰇜

󰇛

󰇜

󰇛

󰇜
󰇛

󰇜



󰇛
󰇜

󰇛

󰇜
󰇛

󰇜

󰇛
󰇜

󰇛

󰇜

󰇛

󰇜
󰇧

󰇨



󰇛
󰇜

󰇛

󰇜
󰇛

󰇜

󰇛
󰇜

󰇛


󰇜




󰇛
󰇜

,
󰇛
󰇜

󰇛


󰇜

󰇛
󰇜

󰇛


󰇜



and for

󰇧

󰇨

󰇛
󰇜
󰇧

󰇨

we have
󰇛
󰇜

󰇛

󰇜
󰇛
󰇜


󰇧

󰇨

󰇧
󰇨


󰇧
󰇨

INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X,October 2024
www.ijltemas.in Page 219
󰇭
󰇧
󰇨

󰇮
󰇧
󰇨
󰇧
󰇨󰇧
󰇨


󰇧

󰇨


󰇧

󰇨

Lemma 6 For , and
 we have
󰇧

󰇧

󰇨
󰇨



.
Proof We have
󰇭

󰇧
󰇨󰈏
󰈏
󰇮

󰇛
󰇜
where
󰇛
󰇜
󰇛

󰇜

󰇛

󰇜


󰇧
󰇨



󰇛
󰇜

󰇛

󰇜

󰇛

󰇜

󰇛
󰇜

󰇛

󰇜
󰇛

󰇜




󰇛
󰇜


󰇛

󰇜
󰇛

󰇜



from lemma 5,
󰇛
󰇜

󰇛

󰇜
󰇛

󰇜
󰇧
󰇨



󰇛
󰇜


󰇛

󰇜
󰇛

󰇜

󰇛
󰇜

󰇛

󰇜

󰇛

󰇜



󰇛
󰇜


󰇛

󰇜
󰇛

󰇜

.
Approximation in Weighted Space with Generalized Max-Product Type Favard-Szász-Mirakyan-Durrmeyer Operators
Theorem 1 For 󰇛󰇜
and

,
INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X,October 2024
www.ijltemas.in Page 220
󰇛

󰇜

󰇧



󰇨


, 
.
Proof
󰇛󰇜 we get,
󰇛

󰇜
󰇛
󰇛
󰇜
󰇜
󰇛
󰇜
󰇛󰇜
󰇛
󰇛
󰇜
󰇜
󰇛
󰇛
󰇜
󰇜
󰇛
󰇜
󰇛
󰇜
󰇜
󰇛
󰇛
󰇜
󰇛
󰇜
󰇜
and 󰇛󰇜󰇛󰇜

󰇛
󰇜󰇛


󰇜

󰇛

󰇜
according to this

󰇧

󰇨
󰈅
󰈅

󰇛

󰇜
󰇧

󰇧

󰇨
󰇨

󰇛

󰇜
󰇭

󰇧

󰇨󰇭󰈏
󰈏󰇮
󰇮

󰇛
󰇜
using remark 1 and lemma 6 also taking the value
󰇛
) we obtain
󰇧


󰇨

󰇧

󰇨
󰇧


󰇨

󰇧

󰇨

󰇛

󰇜
󰇧


󰇨

󰇧

󰇨
which proves the theorem.
References
1. Alsattuf, N. 2024. “Kesilmem maksimum çarpım tipindeki operatörlerin yaklaşım özellikleri”, Yüksek Lisans Tezi,
Fen Bilimleri Enstitüsü, Harran Üniversitesi, Şanlıurfa.
2. Baruğ, F., Kırcı Serenbay, S. 2021. “Approximation of modified Favard Szasz-Mirakyan operators of maximum-product
type”, Bull. Pure Appl. Sci. Sect. E Math. Stat 40.1: 60-69.
3. Bede, B., Coroianu, L. and Gal, S.G., 2010. Approximation and shape preserving properties of the nonlinear Favard-
Szàsz-Mirakjan operators of max-product kind.Filomat 24(3), 5572
4. Bede, B. and Gal, S.G., 2010. Approximation by nonlinear Bernstein and Favard-Szász-Mirakjan operators of max-
product kind. J. Concr. Appl. Math. 8(2), 193--207.
5. Bede, B., Coroianu, L. and Gal, S. G. Approximation by truncated Favard-Szasz-Mirakjan operator of max-product
kind, Demonstratio Mathematica, 44 (2011), no. 1, 105--122.
6. Favard, J., 1944. Sur les multiplicateurs d'interpolation. J. Math. Pures Appl.23(9), 219--247.
7. Holhoş, A. Uniform weighted approximation by positive linear operators, Stud. Univ. Babe s-Bolyai Math., 56 (3)
(2011), 135--146.
INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue X,October 2024
www.ijltemas.in Page 221
8. Holhoş, A. (2018). Weighted approximation of functions by Favard operators of max-product type. Periodica
Mathematica Hungarica, 77(2), 340-346.
9. Kırcı Serenbay, S., Dalmanoğlu, Ö., Acar, E. 2022. “Approximation Properties of The Nonlinear Jain Operators”,
Mathematical Sciences and Applications E-Notes, 10 (4), 179-189
10. Majeed, S. Y., Serenbay Kır, S. 2024. “On approximation by truncated max-product Baskakov operators of fuzzy
numbers”. Filomat, 38(9), 3179-3191.
11. Majeed, S.Y., Serenbay Kırcı, S. 2023. “Analyzing Convergence of Fuzzy Numbers Using Generalized Max-Product
Bernstein-Chlodowsky Operators on Compact Intervals”. Rare Metal Materials and Engineering, 52(9), 38-52.
12. Mazhar, S. M., Totik, V., 1985 Approximation by modified Szász operators, Acta. Sei. Math., 257-269
13. Mirakyan, G.M., 1941. Approximation des fonctions continues au moyen de polynômes de la form
󰇛

󰇜 Dokl.
Akad. Nauk SSSR 31, 201--205.
14. Szasz, O.,1950.Generalization of S. Bernstein's polynomials to the infinite interval. Journal of Research of the National
Bureau of Standards, 45,239-245.