INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue VI, June 2024
www.ijltemas.in Page 43
our future endeavors will be guided by a deep commitment to ethical considerations, prioritizing user well-being and privacy. As
researchers, we recognize the profound responsibility that comes with developing tools that have the potential to impact
individuals' mental health. Consequently, we will actively engage with stakeholders, including mental health professionals,
policymakers, and the broader community, to ensure that our work aligns with ethical principles and best practices.
Acknowledgment
The authors extend their heartfelt gratitude to all individuals who contributed to the success of this research. Above all, the
authors express deep gratitude to the Lord Almighty for his unwavering guidance through the challenges of this research.
References
1. Arras, L., Arjona-Medina, J., Widrich, M., Montavon, G., Gillhofer, M., Müller, K. R., ... & Samek, W. (2019).
Explaining and interpreting LSTMs. Explainable ai: Interpreting, explaining and visualizing deep learning, 211-238.
2. Ayad, C. W., Bonnier, T., Bosch, B., & Read, J. (2022, October). Shapley chains: Extending Shapley values to
classifier chains. In International Conference on Discovery Science (pp. 541-555). Cham: Springer Nature
Switzerland.
3. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020).
Language
models
are
few-shot
learners.
Advances
in
neural
information Processing systems, 33, 1877-1901.
4. Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). Electra: Pre-training text encoders as discriminators
rather than generators. arXiv preprint arXiv:2003.10555.
5. Colin, R. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR, 21(140),
6. Denecke, K., & Reichenpfader, D. (2023). Sentiment analysis of clinical narratives: a scoping review. Journal of
Biomedical Informatics, 104336.
7. Devlin, J., Chang, M. W., Lee, K., & Bert, K. T. (1810). Pre-training of deep bidirectional
transformers for language
understanding (2018). arXiv preprint arXiv:1810.04805.
8. Garcia, R., Munz, T., & Weiskopf, D. (2021). Visual analytics tool for the interpretation of hidden states in recurrent
neural networks. Visual Computing for Industry, Biomedicine, and Art, 4(1), 24.
9. Greff, K., Van Steenkiste, S., & Schmidhuber, J. (2020). On the binding problem in artificial neural networks. arXiv
preprint arXiv:2012.05208.
10. Huang, F., Li, X., Yuan, C., Zhang, S., Zhang, J., & Qiao, S. (2021). Attention-emotion- enhanced convolutional LSTM
for sentiment analysis. IEEE transactions on Neural networks and learning systems, 33(9), 4332-4345.
11. Karpathy, A., Johnson, J., & Fei-Fei, L. (2015). Visualizing and understanding recurrent networks. arXiv preprint
arXiv:1506.02078.
12. Ma, T., Wu, Q., Jiang, H., Lin, J., Karlsson, B. F., Zhao, T., & Lin, C. Y. (2024). Decomposed Meta-Learning for Few-
Shot Sequence Labeling. IEEE/ACM Transactions on Audio, Speech, and Language Processing.
13. Murdoch, W. J., & Szlam, A. (2017). Automatic rule extraction from long short-term memory networks. arXiv preprint
arXiv:1702.02540.
14. Pascanu, R., Gulcehre, C., Cho, K., & Bengio, Y. (2013). How to construct deep recurrent neural networks. arXiv
preprint arXiv:1312.6026.
15. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of
transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140), 1-67.
16. Tran, H. T., Nguyen, D. V., Ngoc, N. P., & Thang, T. C. (2020). Overall quality prediction for HTTP adaptive streaming
using LSTM network. IEEE Transactions on Circuits and Systems for Video Technology, 31(8), 3212-3226.
17. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is
all you need. Advances in neural information processing systems, 30.
18. Xu, Z., Chen, J., Shen, J., & Xiang, M. (2022). Recursive long short-term memory network for predicting nonlinear
structural seismic response. Engineering Structures, 250, 113406.
19. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive
pretraining for language understanding. Advances in neural information processing systems, 32.
20. Zheng, H. (2023). Towards human-like compositional generalization with neural models.