INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue VII, July 2024
www.ijltemas.in Page 91
63. Robbins, S., & van Wynsberghe, A. (2022). Our New Artificial Intelligence Infrastructure: Becoming Locked into an
Unsustainable Future. Sustainability, 14(8), 4829. https://doi.org/10.3390/su14084829
64. Ross, B., Hofeditz, L., Möllmann, N. R. J., Mirbabaie, M., & Stieglitz, S. (2023). Recommendations for managing AI-
driven change processes: when expectations meet reality. International Journal of Management Practice, 16(4), 407.
https://doi.org/10.1504/ijmp.2023.10055048
65. Saeed, S., Suayyid, S. A., Al-Ghamdi, M. S., Al-Muhaisen, H., & Almuhaideb, A. M. (2023). A Systematic Literature
Review on Cyber Threat Intelligence for Organizational Cybersecurity Resilience. Sensors, 23(16), 7273.
https://doi.org/10.3390/s23167273
66. Samariya, D., & Thakkar, A. (2021). A Comprehensive Survey of Anomaly Detection Algorithms. Annals of Data
Science. https://doi.org/10.1007/s40745-021-00362-9
67. Šegvić S., Brkić, K., Zoran Kalafatić, Vladimir Stanisavljević, Marko Ševrović, Budimir, D., & Dadić, I. (2010). A
computer vision assisted geoinformation inventory for traffic infrastructure. International Conference on Intelligent
Transportation Systems. https://doi.org/10.1109/itsc.2010.5624979
68. Settanni, F. (2022, April 13). Towards intelligence driven automated incident response. Webthesis.biblio.polito.it.
http://webthesis.biblio.polito.it/id/eprint/22865
69. Shukla, A., & Karki, H. (2016). Application of robotics in onshore oil and gas industry—A review Part I. Robotics and
Autonomous Systems, 75, 490–507. https://doi.org/10.1016/j.robot.2015.09.012
70. Şimşek, D., Kutlu, I., & Şık, B. (2023). The role and applications of artificial intelligence (AI) in disaster management.
Proceedings of 3rdInternational Civil Engineering and Architecture Congress (ICEARC’23).
https://doi.org/10.31462/icearc.2023.arc992
71. Singh S. K., Manjhi P. K., & Tiwari, R. S. (2021). Cloud Computing Security Using Blockchain Technology. In Book:
Transforming Cybersecurity Solutions Using Blockchain (Pp.19-30). https://doi.org/10.1007/978-981-33-6858-3_2
72. Sirohi, D., Kumar, N., & Rana, P. S. (2020). Convolutional neural networks for 5G-enabled Intelligent Transportation
System: A systematic review. Computer Communications, 153, 459–498. https://doi.org/10.1016/j.comcom.2020.01.058
73. Suganthi, L., Iniyan, S., & Samuel, A. A. (2015). Applications of fuzzy logic in renewable energy systems – A review.
Renewable and Sustainable Energy Reviews, 48, 585–607. https://doi.org/10.1016/j.rser.2015.04.037
74. Taddeo, M., McNeish, D., Blanchard, A., & Edgar, E. (2021). Ethical Principles for Artificial Intelligence in National
Defence. Philosophy & Technology, 34(4), 1707–1729. https://doi.org/10.1007/s13347-021-00482-3
75. Tatineni S. (2023). AI-Infused Threat Detection and Incident Response in Cloud Security. International Journal of
Science and Research, 12(11), 998–1004. https://doi.org/10.21275/sr231113063646
76. Tomic, S., Fensel, A., & Pellegrini, T. (2010). SESAME demonstrator. In: Proceedings of the 6th International
Conference on Semantic Systems. Graz, Austria, 1, 4. https://doi.org/10.1145/1839707.1839738
77. Tonhauser, M., & Jozef Ristvej. (2023). Cybersecurity Automation in Countering Cyberattacks. Transportation Research
Procedia, 74, 1360–1365. https://doi.org/10.1016/j.trpro.2023.11.283
78. Umoga, J., Oluwademilade, E., Ugwuanyi, D., Jacks, S., Lottu, A., Daraojimba, D., & None Alexander Obaigbena.
(2024). Exploring the potential of AI-driven optimization in enhancing network performance and efficiency. Magna
Scientia Advanced Research and Reviews, 10(1), 368–378. https://doi.org/10.30574/msarr.2024.10.1.0028
79. Veres, M., & Moussa, M. (2020). Deep Learning for Intelligent Transportation Systems: A Survey of Emerging Trends.
IEEE Transactions on Intelligent Transportation Systems, 21(8), 3152–3168. https://doi.org/10.1109/tits.2019.2929020
80. Wang, C.-X., Renzo, M. D., Stanczak, S., Wang, S., & Larsson, E. G. (2020). Artificial Intelligence Enabled Wireless
Networking for 5G and Beyond: Recent Advances and Future Challenges. IEEE Wireless Communications, 27(1), 16–
23. https://doi.org/10.1109/mwc.001.1900292
81. Wazid, M., Das, A. K., Chamola, V., & Park, Y. (2022). Uniting cyber security and machine learning: Advantages,
challenges and future research. ICT Express, 8(3). https://doi.org/10.1016/j.icte.2022.04.007
82. Xu, Z., Lian, J., Bin, L., Hua, K., Xu, K., & Chan, H. Y. (2019). Water Price Prediction for Increasing Market Efficiency
Using Random Forest Regression: A Case Study in the Western United States. Water, 11(2), 228.
https://doi.org/10.3390/w11020228
83. Yaacoub, J.-P. A., Noura, H. N., Salman, O., & Chehab, A. (2021). Robotics Cyber security: vulnerabilities, attacks,
countermeasures, and Recommendations. International Journal of Information Security, 21(21).
https://doi.org/10.1007/s10207-021-00545-8
84. Yao, H., Wu, F., Ke, J., Tang, X., Jia, Y., Lu, S., Gong, P., Ye, J., & Li, Z. (2018). Deep Multi-View Spatial-Temporal
Network for Taxi Demand Prediction. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1).
https://doi.org/10.1609/aaai.v32i1.11836
85. Yin, J., & Zhao, W. (2016). Fault diagnosis network design for vehicle on-board equipments of high-speed railway: A
deep learning approach. Engineering Applications of Artificial Intelligence, 56, 250–259.
https://doi.org/10.1016/j.engappai.2016.10.002
86. Zhang, X., Nguyen, H., Bui, X.-N., Anh Le, H., Nguyen-Thoi, T., Moayedi, H., & Mahesh, V. (2020). Evaluating and
Predicting the Stability of Roadways in Tunnelling and Underground Space Using Artificial Neural Network-Based
Particle Swarm Optimization. Tunnelling and Underground Space Technology, 103, 103517.
https://doi.org/10.1016/j.tust.2020.103517