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Abstract:  The problem of plane  elasticity for a doubly  connected body  with inner  and outer boundaries in a  regular polygonal form  with  common  centre  and  parallel  sides  has  been  studied.  The  sides  of  the  polygon  were  exposed  to  external  forces.  The nature of the force term was determined by application of complex variable theory. Kolosov’s method of solution was applied to obtain the biharmonic equation of the forcing term.  The forces on the particle were studied under 2-dimensions from  which the compatibility and equilibrium equations were derived. The compatibility and equilibrium equations were used to derive the force

– stress relations. The results shows that there is a significant relationship between the angle of the force term on the plane of the particle and the stress state of the particle, which is in conformity with existing experimental results.
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I.  Introduction  

The theory of elasticity describes deformable materials such as rubber, cloth, paper and flexible metals.  It is often used to model the behavior of non-rigid curves, surfaces and solids as a function of time.  Elasticity deformable models are active  and respond naturally to applied forces, constraints, ambient, media and impenetrable obstacles, Terzopoulos  et al,  (1987).

One of the most efficient and elegant techniques of solving problems in the linear theory  of elasticity is the method of complex stress  functions  which  is  mainly  associated  with  Kolosov,  (1909),  Muskhelishvili  (1966),  Bock,  and  Gurlebeck,  (2009).    In particular,  application  of  complex  variable  theory  in  solving  elasticity  problems  resulted  from  the  complex  potential,  which  is peculiar  to  analytic  complex  functions.  It  is  exceedingly  fruitful  for  effective  solution  of boundary  value  problems  and  general functions that relates theoretically with Cauchy’s integral formula and conformal mappings, Kapanadze and Gulna (2016).  Chou and  Pagano  (2001)  opined  that  one  of  the  major  problems  in  the  theory  of  elasticity  is  that  of  determining  the  full  strength  of surfaces which aid in controlling the stress concentration both on the surface and at the boundaries of surfaces.

Recently, construction and engineering practices suffer major setbacks resulting from negligence, poor analysis and examination of materials and the stress strength of surfaces and contours on which the load/stress are imposed. Odishelidze and Kriado (2006) further established that investigation of stresses concentration near the contour of surfaces is one of the major problems in plane elasticity  theory,  especially  in  plate  with  a  hole  where  the  tangential-normal  stresses  and  the  tangential-normal  moments  can reach such values that cause destruction of plates or formation of plastic zones near the hole at some points.  In cases of infinite domains,  the  minimum  of  maximum  values  of  tangential-normal  stresses  will  be  obtained  on  such  holes,  where  these  values maintain constant (full strength holes).

A mixed problem of plane elasticity theory for doubly-connected domain with partially unknown boundary conditions was solved in  Odishelidze   et  al  (2015).  The  problem  of  plane  elasticity  theory  for  a  doubly  connected  domain  with  partially  unknown boundary  was  solved  in  Odishelidze  (2015)  using  the  methods  of  the  theory  of  analytic  complex  functions.  Boundary  valued equation for force term in non-homogeneous equation of statics in the theory of elastic mixtures was solved in Udoh and Ndiwari, (2018) using Kolosov-Muskhelishvili formula for a displacement vector in an elastic mixture of homogeneous body. Biharmonic solution for a force term in a non-homogeneous equation of statics in the theory of elastic mixtures was provided by Ndiwari and Ongodiebi.  (2020)  using  complex  variable  theory,  where  constant  introduction  of  the  force  term  at  a  fixed  point  on  the  plane directly affected the stability of the particle.

In  this  work,  we  considered  a  problem  of  plane  elasticity  for  a  doubly  connected  domain  with  inner  and  outer  boundaries  in  a regular polygonal  form  with common center and parallel sides. The  sides of the body  were exposed to external unknown  force and  the  boundary  conditions  were  determined  at  equilibrium  in  order  to  ascertain  the  impact  of  the  forcing  term  and  its relationship with the stability of the isotropic elastic material. We derived the forcing term from the non-homogeneous equation of statics in the theory of elastic mixture. The unknown forces were analyzed in two-dimensions from stress function to derive the equilibrium,  compatibility  and  biharmonic  equations.  The  basic  equation  of  elasticity  was  obtained  using  the  compatibility equation and the stress-strain relation. The boundary equation of the unknown forcing term  was derived and graphs generated to illustrate and explain the relationship between the angle of the forcing term and the stress state of the isotropic elastic material. 
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Mathematical Formulation 

We considered a homogeneous isotropic elastic body in a doubly connected domain D on the complex plane z = x + iy.  Its outer and  inner  boundaries  are  Lo  and  L1  respectively  and  form  a  rectangle  with  a  common  center  z  =  0  and  parallel  sides.    The neighbourhood of the vertices of the inner rectangle are equal smooth arcs which are symmetric angles of equidistance  from the centre as in Figure 1.  We assumed that the  edges of the isotropic elastic body are  exposed to the external force in the form of load.  We  further  assumed  that  both boundaries,  L0  of  the  elastic  body  and  that  of  the hole  are  smooth  and  free  from  frictional forces. Under these assumptions, the normal displacements of the outer and inner boundaries are constant respectively, while the unknown  arcs  are  exposed  to  external  force.  Our  aim  was  to  determine  the  equilibrium  solution  for  the  force  term,  F  and  the relationship between the angle of the force term on the plane of the particle and the stress state of the particle.

Figure 1. Isotropic elastic body

II. Method of Solution 

To  determine  the  force  term  F,  we  applied  the  non-homogeneous  equation  in  the  theory  of  elastic  mixtures  as  our  governing equation and adopt [Kolosov, (1909) and Muskhelishvili. (1966)]. The displacement components of the vector are represented in this  theory  by  means  of  four  arbitrary  analytic  functions  as  in  [Ndiwari  and  Ongodiebi  (2020)].  The  basic  non-homogeneous equations governing the theory of elastic mixture in 2-dimensions [Kapanadze and Gulna (2016)] is given by 𝑎1∆𝑢 ′ + 𝑏1𝑔𝑟𝑎𝑑𝑑𝑖𝑣𝑢 ′ + 𝑐∆𝑢 ′′ + 𝑑𝑔𝑟𝑎𝑑𝑑𝑖𝑣𝑢 ′′                = 𝜌1𝐹 ′ =  𝛹 ′ 

𝑐∆𝑢 ′ +  𝑑𝑔𝑟𝑎𝑑𝑑𝑖𝑣𝑢 ′ + 𝑎2∆𝑢 ′′ + 𝑏2𝑔𝑟𝑎𝑑𝑑𝑖𝑣𝑢 ′′               =   𝜌2𝐹 ′′ =   𝛹 ′′    

 

1

Where Δ is the 2-dimensional Laplacian, grad and div are the principal operators of the field theory,  𝜌1 and 𝜌2 are the partial densities (positive constants of the mixture),  F′ and F′′ are the mass forces, respectively; u' = (u1', u2') = w'  and  u'' = (u1'', u2'') =

w'' are the displacement vectors,  Ψ' and  Ψ'' denote the product of the partial density ρ and the mass force F, respectively, a1,a2, b1, b2, c and dare combination of constitutive constants characterizing the physical properties of the mixtures specified as a

‒

1 = μ1 –λ5,

a2 = μ2   λ5,

b= μ

+ λ

ρ

= μ

+ λ

ρ

2 + λ2

5 + p-1α2 1,

b1

1 + λ1

5 + p-1α2 2,

c = μ + λ5, d = μ + λ –

–

ρ p = ρ + ρ

3

3

4   λ5   p-1α2 1,

1

2,

(2)

a

ρ

2 =μ2 – λ2 +λ5 + p-1a2 1

 

α =λ

2

3 –λ4

where μ

, (i =1,2,3,4,5) is the mixture’s thermal conductivity constant.

i, (i = 1,2,3) is the mixture’s permeability constant and λi Applying Complex Variables Theory  

Applying complex variable theory, we solve Equation (1) as follows: 𝑧 = 𝑥1 + 𝑖x2

 

(3)

And its conjugate as

𝑧̅ = 𝑥1 – 𝑖x2

 

(4)

Adding (3) and (4) gives

2𝑥1 = 𝑧 + 𝑧̅

 

(5)
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Subtracting (4) from (3) gives

2ix2 = z - 𝑧̅

 

(6)

Expressing (5) in partial differential equation, gives

2  𝜕   =    𝜕 +   𝜕

 

(7)

𝜕𝑥1

𝜕𝑧

𝜕z̅

Expressing (6) in partial differential equation, gives

2i  𝜕   =    𝜕 − 𝜕

 

(8)

𝜕𝑥2

𝜕𝑧

𝜕z̅

Adding (7) and (8) gives

2 ( 𝜕    +  𝑖 𝜕 )   =  2 𝜕

 

(9)

𝜕𝑥1

𝜕𝑥2

𝜕𝑧

Subtracting (8) from (9) we obtain

2  ( 𝜕 −  𝑖 𝜕 )   =    2 𝜕

 

(10)

𝜕𝑥1

𝜕𝑥2

𝜕𝑧̅

Multiplying (9) and (10) we have

4  𝜕2 = 4 ( 𝜕2 +   𝜕2 ) + 4i  ( 𝜕2

−

𝜕2

)

 

(11)

𝜕𝑧𝜕𝑧̅

𝜕𝑥2

2

1

𝜕𝑥2

𝜕𝑥1𝜕𝑥2

𝜕𝑥1𝜕𝑥2

Equating the two right terms of (11) to the right part of (7) and (8) respectively, we obtain 4 ( 𝜕2   +  𝜕2 ) =   4 ( 𝜕 + 𝜕 ) 

 

(12)

𝜕𝑥2

2

1

𝜕𝑥2

𝜕𝑧

𝜕𝑧̅

4𝑖 ( 𝜕2

−

𝜕2

) = ‒  4𝑖 ( 𝜕 − 𝜕 ) 

 

(13)

𝜕𝑥1𝜕𝑥2

𝜕𝑥1𝜕𝑥2

𝜕𝑧

𝜕𝑧̅

Replacing the two right hand term of (11) by the two right terms of (12) and (13) respectively, gives 4 𝜕2   =   4 ( 𝜕 + 𝜕 ) ‒  4i ( 𝜕 − 𝜕 )

 

(14)

𝜕𝑧𝜕𝑧̅

𝜕𝑧

𝜕𝑧̅

𝜕𝑧

𝜕𝑧̅

Let the displacement vectors 𝑢′𝑎𝑛𝑑  𝑢′′ be represented in their complex form [12] by 𝑤′ = 𝑢′

′

̅̅̅

′

′

1 + i𝑢2,     w′ =   𝑢1 ‒ 𝑖𝑢2

 

(15)

𝑤′′ =   𝑢′′

′′

̅̅̅

′′

′′

1   + 𝑖𝑢2 ,      w′′ = 𝑢1 ‒  i𝑢2

 

(16)

Operating (14) on (15) and (16) respectively, we have obtained 4  𝜕2𝑤′ =  4 (𝜕𝑤′ + 𝜕w

̅̅ ′

̅̅) ‒  4i(𝜕𝑤′ − 𝜕w̅̅′̅̅)

 

(17)

𝜕𝑧𝜕𝑧̅

𝜕𝑧

𝜕𝑧̅

𝜕𝑧

𝜕𝑧̅

4  𝜕2𝑤′′ =  4 (𝜕𝑤′′ + 𝜕w

̅̅ ′

̅̅′) ‒ 4i (𝜕𝑤′′ − 𝜕w̅̅′′

̅̅̅)

 

(18)

𝜕𝑧𝜕 𝑧̅

𝜕𝑧

𝜕𝑧̅

𝜕𝑧

𝜕𝑧̅

where the displacement vectors 𝑤′ and 𝑤′′ depend on the elastic and plastic regions.

We adopt [12] in order to make (1) solvable.

Let

∆u′ =   4 𝜕2𝑤ʹ      𝑎𝑛𝑑   ∆u′′  =   4 𝜕2𝑤ʹʹ

 

(19)

𝜕𝑧𝜕𝑧̅

𝜕𝑧𝜕𝑧̅

and

𝜕𝑤ʹ

′

′

′

′

+    𝜕𝑤̅ʹ   =    𝜕 (𝑢1+𝑖𝑢2)   +   𝜕 (𝑢1− 𝑖𝑢2)   =  2𝑑𝑖𝑣 𝑢′

𝜕𝑧

𝜕𝑧̅

𝜕 (𝑥1+𝑖𝑥2)

𝜕 (𝑥1−𝑖𝑥2)

= 2ϴ'

 

(20)

Substituting (19) and (20) for Δu' and div u' in (1)

we obtain
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4a 𝜕2𝑤ʹ

1

+  4𝑐 𝜕2𝑤ʹʹ  +   2𝑏

𝜕𝑧𝜕𝑧̅

𝜕𝑧𝜕𝑧̅

1 𝑔𝑟𝑎𝑑𝜃ʹ + 2𝑑𝑔𝑟𝑎𝑑𝜃ʹʹ

=  𝛹ʹ

𝜕2𝑤ʹʹ

and 4c 𝜕2𝑤ʹ   +  4a

+   2𝑑𝑔𝑟𝑎𝑑𝜃ʹ + 2𝑏

𝜕𝑧𝜕𝑧̅

2 𝜕𝑧𝜕𝑧̅

2𝑔𝑟𝑎𝑑𝜃ʹʹ

=  𝛹′′

 

(21)

where our Laplacian here is defined as

∆ =   ∇. ∇ =    𝜕   .   𝜕

 

𝜕𝑧

𝜕𝑧̅

∇ = 𝑔𝑟𝑎𝑑 =   𝜕

 

(22)

𝜕𝑧̅

Substituting (22) in (21) we obtain

4a 𝜕2𝑤ʹ

𝜕𝜃ʹ

1

+  4𝑐 𝜕2𝑤ʹʹ  + 2𝑏

+ 2𝑑 𝜕𝜃ʹʹ =  𝛹ʹ

𝜕𝑧𝜕𝑧̅

𝜕𝑧𝜕 𝑧̅

1 𝜕𝑧̅

𝜕𝑧̅

𝜕2𝑤ʹʹ

𝜕𝜃ʹʹ

and 4c 𝜕2𝑤ʹ +  4a

+   2𝑑 𝜕𝜃ʹ + 2𝑏

=  𝛹′′ 

𝜕𝑧𝜕𝑧̅

2 𝜕𝑧𝜕𝑧̅

𝜕𝑧̅

2 𝜕𝑧̅

 

(23)

𝜕 (4𝑎 𝜕𝑤ʹ  +   4𝑐 𝜕𝑤′ʹ + 2𝑏

𝜕𝑧̅

1 𝜕𝑧

𝜕𝑧

1𝜃ʹ + 2𝑑𝜃ʹʹ) =  𝛹ʹ

 

(24)

𝜕 (4𝑐 𝜕𝑤′ +   4𝑎 𝜕𝑤ʹʹ + 2𝑑𝜃ʹ + 2𝑏

𝜕𝑧̅

𝜕𝑧

2 𝜕𝑧

2𝜃ʹʹ) =  𝛹ʹʹ

 

(25)

From [13], Integrating (24) and (25) wrt 𝑧̅ we obtain

4𝑎 𝜕𝑤ʹ

1

+   4𝑐 𝜕𝑤ʹʹ + 2𝑏

 

(26)

𝜕𝑧

𝜕𝑧

1𝜃ʹ + 2𝑑𝜃ʹʹ =   ∫ 𝛹ʹ 𝑑𝑧̅   =   𝛹∗

𝑧̅

4𝑐 𝜕𝑤ʹ  +   4𝑎 𝜕𝑤ʹʹ + 2𝑑𝜃ʹ +  2𝑏

 

(27)

𝜕𝑧

1 𝜕𝑧

2𝜃ʹʹ =   ∫ 𝛹′′ 𝑑𝑧̅ =   𝛹∗∗

𝑧̅

𝛹∗

Where

and  𝛹∗∗  are the  analytic (non-homogeneous) terms and  𝛹∗ = 𝑢 + 𝑖𝑣 is the displacement  function in the transformed 𝑧̅

𝑧̅

state as a result of contact with external force and  𝑧̅ =    𝑥1 − 𝑖𝑥2, is the complex conjugate function.

For the Non-Homogeneous Term (𝛹∗) 

𝑧̅

Comparing the non-homogeneous part of (26) and (1), we have that 𝛹∗   =  𝜌𝐹′ =   𝜌(𝐹

𝑧̅

1 +   𝑖𝐹2)

 

(28)

So that

𝛹∗ =   𝑢+𝑖𝑣

 

(29)

𝑧̅

𝑥1−𝑖 𝑥2

Expressing the above in partial differential equation gives:

𝜕𝛹∗   =   𝜕(𝑢+𝑖𝑣)  =   𝜕𝑢   +   𝑖 𝜕𝑢  +   𝑖 𝜕𝑣 − 𝜕𝑣

𝜕𝑧̅

𝜕(𝑥1−𝑖𝑥2)

𝜕𝑥1

𝜕𝑥2

𝜕𝑥1

𝜕𝑥2

=   𝜕𝑢 − 𝜕𝑣   +   𝑖 𝜕𝑢   + 𝑖 𝜕𝑣   =   𝜌𝐹

𝜕𝑥

1   +   𝑖𝜌𝐹2

 

(30)

1

𝜕𝑥2

𝜕𝑥2

𝜕𝑥1

Equating the real and imaginary parts of (30), gives

𝜕𝑢 − 𝜕𝑣   =   𝜌𝐹

𝜕𝑥

1

 

(31)

1

𝜕𝑥2

 

𝜕𝑢  +  𝜕𝑣   =   𝜌𝐹

𝜕𝑥

2

 

(32)

2

𝜕𝑥1
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u =   𝜕𝜑   +   𝜕ƞ

 

(33)

𝜕𝑥1

𝜕𝑥2

 

v =   − 𝜕𝜑   +    𝜕ƞ

 

(34)

𝜕𝑥2

𝜕𝑥1

Substituting (33) and (34) in (32), we obtain

𝜕 ( 𝜕𝜑  +   𝜕ƞ ) − 𝜕 (− 𝜕𝜑  +   𝜕ƞ ) =  ρF

𝜕𝑥

1

 

(35)

1

𝜕𝑥1

𝜕𝑥2

𝜕𝑥2

𝜕𝑥2

𝜕𝑥1

𝜕 ( 𝜕𝜑  +   𝜕ƞ ) + 𝜕 (− 𝜕𝜑  +   𝜕ƞ ) =  ρF

𝜕𝑥

2

 

(36)

2

𝜕𝑥1

𝜕𝑥2

𝜕𝑥1

𝜕𝑥2

𝜕𝑥1

From (35) and (36) we have that

𝜕2𝜑   +  𝜕2𝜑    =    ∇2𝜑 =   𝜌𝐹

𝜕𝑥2

2

1

 

(37)

1

𝜕𝑥2

 

𝜕2ƞ  +   𝜕2ƞ =   ∇2ƞ   = ρF

𝜕𝑥2

2

2

 

(38)

1

𝜕𝑥2

From (37) and (38),

∇2𝜑  + 𝑖∇2ƞ  =  𝜌𝐹1    +  iρF2 =   𝜌𝐹

 

∇2(𝜑 +  𝑖ƞ) =  𝜌(𝐹1    + 𝑖𝐹2 )

 

∇2𝜑 = 𝜌𝐹

(Neglecting the imaginary part)

 

(39)

Newtonian Gravitation and Gravitational Force  

In  the  classical  field  theory,  [5]  describes  the  Newtonian  gravitation  which  describes  the  gravitational  force  F,  as  a  mutual interaction between two masses, M1 and M2 expressed as:

𝐹 =   − 𝐺𝑀1𝑀2

 

(40)

𝑟2

In  this  context, M1  is  the  isotropic  elastic  body  (Figure1), M2  is  the  object  of  our  forcing  term, G  is  the  Earth  gravitational constant  and  r  is  the  distance  between  the  centre  of  the  two  masses  M1  and  M2  respectively.  The  massive  body  M1  has  a gravitational  field  g.  Since  the  gravitational  force  F,  is  conservative,  the  field  g  can  be  written  as  a  gradient  of  a  gravitational scalar potential 𝜑 as

g = −∇φ

 

(41)

Gauss’ Law and Poisson Equation for Gravity  

Gauss’ law of gravity is equivalent to Newton’s law of universal gravitation. The differential form of Gauss’ law is given as

∇. g   =  4𝜋𝐺ρ

 

(42)

Where  ∇. g  is  the  divergence,  G  is  the  universal  constant  and  ρ  is  the  mass  density  at  each  point.  Gauss’  law  is  also  given  in integral form as

∮ g . dA  =   ∫ ∇ . gdV

 

(43)

𝜕𝑣

𝑣

where V is a closed region bounded by a simple closed oriented surface 𝜕𝑣 which is the infinitesimal piece of the volume and g is the gravitational field.  Also, in the  case of a  gravitational field due to  attracting  massive objects of density ρ,  Gauss’ law for gravity in differential form can be used to obtain the corresponding Poisson equation for gravity:

∇. g   =   − 4πGρ

 

(44)

Substituting (41) in (44), gives

∇(−∇𝜑) =   −4𝜋𝐺𝜌

∇2𝜑 = 4𝜋𝐺𝜌

 

(45)

(45)  is the Poisson equation for gravity [11]. Hence, (39) is equivalent to (45) because it involves the mutual interaction between the isotropic elastic body (M1) in Figure1 and the object of our force term (M2).

That is
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∇2𝜑 = 𝜌𝐹

∇2𝜑 = 4𝜋𝐺𝜌

𝜌𝐹 =  4𝜋𝐺𝜌

𝐹 = 4𝜋𝐺

 

(46)

Hence, our forcing term is a gravitational force, and it is Poisson in nature, as such it is restricted to a plane.

Equation of Equilibrium 

We consider the surface area of Figure 1 as follows:

Y

F = mg

β

S

α

X

Figure 3:

0   - Surface area of Figure1 and its force distribution where

F = mg is the gravitational force (mass x gravity)

S = Surface area (length (𝛼) x breadth (β)).

τ

x b

y

k

σ

a

c

σx

x

d

τ

y 

x

h

Figure 4: - Stress distribution on a

rectangular Plane

where:

σx

= Normal stress in the x-direction

σу

= Normal stress in the y-direction

τxy

= Shear stress in the x-direction

τyx

= Shear stress in the y-direction

[6] deduced that

𝜕𝜎𝑥

𝜕𝜏

+  𝑥𝑦 =  0

𝜕𝑥

𝜕𝑦

𝜕𝜎𝑦

𝜕𝜏

+   𝑥𝑦   =  0

 

(47)

𝜕𝑦

𝜕𝑥

𝜏𝑦𝑥 =   𝜏𝑥𝑦 (Symmetric).

(48) is the Equation of balance or Equilibrium equation in 2-dimensions.
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Compatibility Equation  

Equation (47) shows two equations in three unknowns, with stress components 𝜎𝑥,    𝜎𝑦 𝑎𝑛𝑑 𝜏𝑥𝑦. For compatibility, we adopt [6]

for the strain - displacement relation of the deformation process by introducing 𝜖𝑥 =  𝜕𝑢

 

(48)

𝜕𝑥

𝜖𝑦 =  𝜕𝑣

 

(49)

𝜕𝑦

𝛾𝑥𝑦 =   𝜕𝑢 + 𝜕𝑣

 

(50)

𝜕𝑦

𝜕𝑥

Where u  =  u(𝑥, 𝑦)𝑎𝑛𝑑 𝑣 = 𝑣(𝑥, 𝑦)are displacement vectors in the transformed state (𝑥, 𝑦 − 𝑝𝑙𝑎𝑛𝑒).

Differentiating (48), (49) and (50) twice with respect to y, x, and xy respectively, we obtain

𝜕2𝜖𝑥 =   𝜕2 . 𝜕𝑢 =    𝜕2𝜖𝑥

 

(51)

𝜕𝑦2

𝜕𝑦2 𝜕𝑥

𝜕𝑦2

𝜕2𝜖𝑦

𝜕2𝜖

=   𝜕2 𝜕𝑣 =

𝑦

 

(52)

𝜕𝑥2

𝜕𝑥2 𝜕𝑦

𝜕𝑥2

𝜕2𝛾𝑥𝑦

𝜕2𝜖

=       𝜕2 . 𝜕𝑢 +    𝜕2 . 𝜕𝑣 = 𝜕2𝜖𝑥 +

𝑦53)

𝜕𝑥𝜕𝑦

𝜕𝑦2 𝜕𝑥

𝜕𝑥2 𝜕𝑦

𝜕𝑦2

𝜕𝑥2

From (51), (52) and (53), we obtain

𝜕2𝜖𝑥

𝜕2𝜖

𝜕2𝛾

+

𝑦 =

𝑥𝑦

 

(54)

𝜕𝑦2

𝜕𝑥2

𝜕𝑥𝜕𝑦

(54) is the compatibility equation in 2-dimensions.

Biharmonic Equation  

To solve (54), we apply the stress – strain relationship [11] for plane stress to obtain 1

𝜖𝑥 = (𝜎

𝐸

𝑥 − 𝑣𝜎𝑦 )

(55)

𝜖𝑦 = 1 (𝜎

𝐸

𝑦 − 𝑣𝜎𝑥)

 

(56)

𝜏

𝛾

𝑥𝑦

𝑥𝑦 = 2 (1 + 𝑣)𝜏

𝜏

 

(57)

𝐸

𝑥𝑦   =   1

−𝐺 𝑥𝑦 =   − 𝐺

 

where: v = Poisson ratio, E = Young modulus, G = Modulus of rigidity.

Substituting (55), (56) and (57) into (54), we obtain

1 [ 𝜕2 (𝜎

(𝜎

𝐸 𝜕𝑦

𝑥 − 𝑣𝜎𝑦 )   +    𝜕2

𝑦 − 𝑣𝜎𝑥) ]

 

(58)

2

𝜕𝑥2

𝜕2𝜏

=   2   (1  +  v)

𝑥𝑦

 

(59)

𝐸

𝜕𝑥𝜕𝑦

𝜕2𝜏

=  2(1  +  v)

𝑥𝑦

 

(60)

𝜕𝑥𝜕𝑦

We differentiate   (47) with respect to x and y respectively to eliminate the shearing stress, 𝜏𝑥𝑦 and obtain

𝜕2𝜎𝑥

𝜕2𝜏

+

𝑥𝑦   =  0

 

(61)

𝜕𝑥2

𝜕𝑥𝜕𝑦

𝜕2𝜎𝑦

𝜕2𝜏

+

𝑥𝑦   =  0

 

(62)

𝜕𝑦2

𝜕𝑥𝜕𝑦

Adding (61) and (62), we obtain

𝜕2𝜎𝑥

𝜕2𝜎

𝜕2𝜏

+

𝑦 +  2

𝑥𝑦   =  0

 

(63)

𝜕𝑥2

𝜕𝑦2

𝜕𝑥𝜕𝑦

𝜕2𝜏𝑥𝑦

∂2σ

=   −  1 [𝜕2𝜎𝑥   +

y]

 

(64)

𝜕𝑥𝜕𝑦

2

𝜕𝑥2

∂y2
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Substituting (64) in (60), gives

𝜕2

𝜕2

𝜕2𝜎

𝜕2𝜎

(𝜎

(𝜎

𝑥 −

𝑦 )

𝜕𝑦2

𝑥 − 𝑣𝜎𝑦 ) + 𝜕𝑥2 𝑦 − 𝑣𝜎𝑥) = (1  +  v)(− 𝜕𝑥2

𝜕𝑦2

Such that

𝜕2𝜎𝑥

𝜕2𝜎

𝜕2𝜎

𝜕2𝜎

𝜕2𝜎

–  v

𝑦 +

𝑦 –   v 𝜕2𝜎𝑥   =   − 𝜕2𝜎𝑥 −

𝑦   – v 𝜕2𝜎𝑥 –  v

𝑦

𝜕𝑦2

𝜕𝑦2

𝜕𝑥2

𝜕𝑥2

𝜕𝑥2

𝜕𝑦2

𝜕𝑥2

𝜕𝑦2

and

𝜕2𝜎𝑥

𝜕2𝜎

𝜕2𝜎

+

𝑦 + 𝜕2𝜎𝑥 +

𝑦    =  0

 

(65)

𝜕𝑦2

𝜕𝑥2

𝜕𝑥2

𝜕𝑦2

To solve (65), we introduce a new function φ called Airy’s stress function [6].

For the case under consideration,  φ can be defined, such that: 𝜎𝑥 =   𝜕2φ , 𝜎

, 𝜏

 

(66)

𝜕𝑦2

𝑦   =   𝜕2φ

𝜕𝑥2

𝑥𝑦   =   −    𝜕2φ

𝜕𝑥𝜕𝑦

Substituting (66) in (65), we have

𝜕2 . 𝜕2φ  +  𝜕2 . 𝜕2φ +  𝜕2 . 𝜕2φ  +  𝜕2 . 𝜕2φ   = 0

 

(67)

𝜕𝑦2 𝜕𝑦2

𝜕𝑥2 𝜕𝑥2

𝜕𝑥2 𝜕𝑦2

𝜕𝑦2 𝜕𝑥2

That is

 

𝜕4φ +  2 𝜕4φ  + 𝜕4φ  = 0

𝜕𝑥4

𝜕𝑥2𝜕𝑦2

𝜕𝑦4

So that

∇2. ∇2φ  = 0

∇4𝜑  =  0

 

(68)

(68) is called the Biharmonic Equation.

Comparing (46) and (68), our force term, F becomes

F  =  4πG  =   ∇2𝜑 = 0

Hence,   F  =  0

 

(69)

(69) shows that the force component is Biharmonic in nature.

Stress State of the Force Term on the Plane 

We now consider our force (F), to act on a rectangular plane of area 𝛼𝛽.

α

β

F

 

Figure 5: Surface area and force distribution

Generally, stress is the force per unit area of a body/particle and can be expressed as 𝜎 = 𝐹

 

(70)

𝛼𝛽

Where 𝜎 = stress, Force = force and  𝛼𝛽 = area.

Normal stress (fig. 4) in the x-direction is:
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𝜎𝑥 = 𝑎 = 𝐹  ,

 

(71)

𝛼𝛽

Shear stress in the x-direction is given as:

𝜏𝑥𝑦 = 𝑏 = 𝐹  ,

 

(72)

𝛼𝛽

While the normal stress in the y-direction is

𝜎𝑦 = 𝑐 = 𝐹

 

(73)

𝛼𝛽

From Airy’s stress function 𝜑 [6], we have

𝜎𝑥 = 𝜕2𝜑 ⟹ 𝜑 = 𝜎𝑥 𝑦2 = 𝑎 𝑦2 +  𝑘

 

(74)

𝜕𝑦2

2

2

𝜏𝑥𝑦 = − 𝜕2𝜑 ⟹  𝜑 = 𝜏

𝜕𝑥𝜕𝑦

𝑥𝑦 𝑥𝑦 = 𝑏𝑥𝑦 + 𝑘

 

(75)

𝜎𝑦 = 𝜕2𝜑 ⟹ 𝜑 = 𝑐 𝑥2 + k

 

(76)

𝜕𝑥2

2

Adding (74), (75) and (76)

𝜑 = 𝑎 𝑦2 +  bxy  +   𝑐 𝑥2 +  𝐾

 

(77)

2

2

(77) is the solution that satisfies a typical Biharmonic Equation in 2-dimensions [6].

Stress Distribution on the X and Y Coordinates  

ϴ

ϴ

ϴ

0

ϴ

ϴ

0

0

Figure 6: Stress distributions in a 2-dimensional rectangular plane ϴ0

FX

A.τxycosϴ

A.σsinϴ

ϴ0

Figure 7: Stress distribution on the x- direction
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ϴ0

FY

A.τxysinϴ

A.σycosϴ

 

A

ϴ0

Figure 8: Stress distribution on the y – direction

Deducing from figure 7, the force impact (stress) on the particle in the x-coordinate is obtained as Fx = A (τxycosϴ + σxsinϴ)

 

(78)

𝐹x =   τ

𝐴

xy cosθ + σxsinθ

 

(79)

Similarly, from Figure 8, the force impact (stress) on the particle in the y – coordinate is as 𝐹𝑌 =  A(τxysinθ +  σycosθ)

 

(80)

FY =  τ

𝐴

xy sinθ  +   σycosθ

 

(81)

Hence, we have the system:

F

τ

X + FY = 𝐹 = ( xycosθ    σxsinθ)

 

(82)

𝐴

𝐴

𝐴

τxysinθ   σycosθ

(82) is the stress impact on the coordinates.

Boundary Condition of the Force/stress on the Plane  

The boundary condition is obtained from the requirement that the total stress on the planes of the particle is zero when no force was introduced. That is, the magnitude of the total stress component, det (𝐹 ) =  0

𝐴

τxycosϴ   σxsinϴ

|

| =  0

τ

 

(83)

xy sinϴ    σycosϴ

Then,

τxycosϴ . σycosϴ ‒   σxsinθ. τxysinθ =  0

σycos2θ  = σxsin2θ

σy = tan2ϴ

 

(84)

σx

(84) is our  third result showing the magnitude of the ratio of the normal stressese on the particle.

III. Results 

From (68) and (69), the magnitude of the force components on the particle is zero at equilibrium.

From [10], the magnitude of the force term is given by 

F = s (cos2a - sin2a).

From (84), our graph is given by:
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Figure 9:  Graph of the ratio of normal stresses against the angle  ϴ. 

IV. Discussion of Results 

The  graph in Figure 9 above results from the relationship between the ratio of the normal forces and the angle of the force.  The curve rises from the origin, 0  when no force term  was introduced and rises uniformly to the point when the force acted at angle 60o  and  increases  rapidly  when  the  force  acted  above  60o.  The  magnitude  of  the  ratio  of  the  normal  stresses  on  the  particle attained  its  maximum  value  when  the  force  acted  at  angle  75o.  Beyond  75o,  the  particle demonstrates  its  elastic  nature  and  the curve drops rapidly downward to the origin, 0.When the force acted at 900on the plane of the particle, the body regains its elastic potential and returns to its equilibrium state as the stress resolves itself to zero due to the perfect angular formation which allows even distribution of the stresses on both coordinates. When the force acted beyond 90o, the magnitude of the ratio of the normal stresses  on  the  particle  oscillates  back  to  its  maximum  point,  which  shows  that  the  elastic  potential  of  the  particle  has  been weakened.

V. Conclusion 

In this paper, the problem of non-homogeneous equation of statics in the theory of elastic mixture was considered using complex variable theory. Our theoretical solution for the stress state of the isotropic elastic body examined was found to be consistent with the experimental existing result.
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