INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue IX, September 2024
www.ijltemas.in Page 93
in a deregulated power industry. 2014 9th International Conference on System of Systems Engineering (SOSE), 79–84.
https://doi.org/10.1109/SYSOSE.2014.6892467
17. Jarndal, A., & Hamdan, S. (2017). Forecasting of peak electricity demand using ANNGA and ANN-PSO approaches.
2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), 1–5.
https://doi.org/10.1109/ICMSAO.2017.7934842
18. Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in
Agriculture, 147(July 2017), 70–90. https://doi.org/10.1016/j.compag.2018.02.016
19. Keele, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. In EBSE Technical
Report EBSE-2007-01: Vol. 2.3 (Issue 5).
20. Kumi, E. N. (2017). The Electricity Situation in Ghana: Challenges and Opportunities. Center for Global Development,
September. www.cgdev.org
21. Kuster, C., Rezgui, Y., & Mourshed, M. (2017). Electrical load forecasting models: A critical systematic review.
Sustainable Cities and Society, 35, 257–270. https://doi.org/10.1016/j.scs.2017.08.009
22. Liu, Z. (2015). Global Energy Development: The Reality and Challenges. In Global Energy Interconnection (pp. 1–64).
Elsevier. https://doi.org/10.1016/B978-0-12-804405-6.00001-4
23. Mengying, H., Jiandong, D., Zequan, H., Peng, W., Shuai, F., Peijia, H., & Chaoyuan, F. (2019). Monthly Electricity
Forecast Based on Electricity Consumption Characteristics Analysis and Multiple Effect Factors. 2019 IEEE 8th
International Conference on Advanced Power System Automation and Protection (APAP), 1814–1818.
https://doi.org/10.1109/APAP47170.2019.9224784
24. Mosavi, A., Salimi, M., Faizollahzadeh Ardabili, S., Rabczuk, T., Shamshirband, S., & Varkonyi-Koczy, A. (2019).
State of the Art of Machine Learning Models in Energy Systems, a Systematic Review. Energies, 12(7), 1301.
https://doi.org/10.3390/en12071301
25. Nti, I. K., Adekoya, A. F., & Weyori, B. A. (2019a). A systematic review of fundamental and technical analysis of stock
market predictions. Artificial Intelligence Review, 53(4), 3007–3057. https://doi.org/10.1007/s10462-019-09754-z
26. Nti, I. K., Adekoya, A. F., & Weyori, B. A. (2019b). Random Forest Based Feature Selection of Macroeconomic
Variables for Stock Market Prediction. American Journal of Applied Sciences, 16(7), 200–212.
https://doi.org/10.3844/ajassp.2019.200.212
27. Nti, I. K., Adekoya, A. F., & Weyori, B. A. (2021). A novel multi-source information-fusion predictive framework based
on deep neural networks for accuracy enhancement in stock market prediction. Journal of Big Data, 8(1), 17.
https://doi.org/10.1186/s40537-020-00400-y
28. Pannakkong, W., Sriboonchitta, S., & Huynh, V.-N. (2018). An Ensemble Model of Arima and Ann with Restricted
Boltzmann Machine Based on Decomposition of Discrete Wavelet Transform for Time Series Forecasting. Journal of
Systems Science and Systems Engineering, 27(5), 690–708. https://doi.org/10.1007/s11518-018-5390-8
29. Pereira, C. M., Almeida, N. N. de, & Velloso, M. L. F. (2015). Fuzzy Modeling to Forecast an Electric Load Time
Series. Procedia Computer Science, 55(Itqm), 395–404. https://doi.org/10.1016/j.procs.2015.07.089
30. Rusli, R., Hidayanto, A. N., & Ruldeviyani, Y. (2019). Consumption Prediction on Steam Power Plant Using Data
Mining Hybrid Particle Swarm Optimization (PSO) and Auto Regressive Integrated Moving Average (ARIMA). 2019
International Workshop on Big Data and Information Security (IWBIS), 15–20.
https://doi.org/10.1109/IWBIS.2019.8935844
31. Ruzic, S., Vuckovic, A., & Nikolic, N. (2003). Weather sensitive method for short term load forecasting in electric
power utility of serbia. IEEE Transactions on Power Systems, 18(4), 1581–1586.
https://doi.org/10.1109/TPWRS.2003.811172
32. Sharma, R., Kamble, S. S., Gunasekaran, A., Kumar, V., & Kumar, A. (2020). A systematic literature review on
machine learning applications for sustainable agriculture supply chain performance. Computers and Operations
Research, 119, 104926. https://doi.org/10.1016/j.cor.2020.104926
33. Simeone, O. (2018). A Very Brief Introduction to Machine Learning with Applications to Communication Systems.
IEEE Transactions on Cognitive Communications and Networking, 4(4), 648–664.
https://doi.org/10.1109/TCCN.2018.2881442
34. Stanisavljevic, D., & Spitzer, M. (2016). A Review of Related Work on Machine Learning in Semiconductor
Manufacturing and Assembly Lines. August 2018.
35. Yang, A., Li, W., & Yang, X. (2019). Short-term electricity load forecasting based on feature selection and Least
Squares Support Vector Machines. Knowledge-Based Systems, 163, 159–173.
https://doi.org/10.1016/j.knosys.2018.08.027
36. Yildiz, B., Bilbao, J. I., & Sproul, A. B. (2017). A review and analysis of regression and machine learning models on
commercial building electricity load forecasting. Renewable and Sustainable Energy Reviews, 73(December 2016),
1104–1122. https://doi.org/10.1016/j.rser.2017.02.023
37. Zivanovic, R. (2002). Nonparametric trend model for short term electricity demand forecasting. Fifth International
Conference on Power System Management and Control, 2002, 347–352. https://doi.org/10.1049/cp:20020060