A Novel Approach to Nonlinear Volterra-Fredholm Integral Equations Using Abaoub Shkheam Decomposition Method
Article Sidebar
Main Article Content
In this study, we introduce a novel approach to the solution of a nonlinear Volterra -Fredholm integral equations by applying the Adomian decomposition method under the effect of the Abaoub- Shkheam transform. We demonstrate the existence and uniqueness of the solution in Banach space and illustrate this idea with an example.
Downloads
Downloads
References
Wazwaz A. (2011) Linear and Nonlinear Integral Equation (Methods and Applications), High Education Press, Beijing and Springer- Verlag Berlin Heidelberg.,
Adomian, G. (1989) Nonlinear Stochastic Systems Theory and Applications to Physics,, Kluwer Academic, Dordrecht. DOI: https://doi.org/10.1007/978-94-009-2569-4
Kanwal, R. (1997) Linear Integral equations, Birkhauser. DOI: https://doi.org/10.1007/978-1-4612-0765-8
Micula, S. (2020) A Numerical method for weakly singular Nonlinear Volterra Integral Equation of the second kind, MDPI, Symmetry, 12. https://doi.org/10.3390/sym12111862. DOI: https://doi.org/10.3390/sym12111862
Kreyszig, E. (1978) Introductory Functional Analysis with Applications, Wiley, New York.
Wolfgang von Goethe, J. (2018) Normed spaces...Vector spaces, Semantic scholar.org.
Kartsatos, A. G. 2005) Advanced Ordinary Differential Equations, Springer Monographs in Mathematics, Hindawi Publishing Corporation. New York.
Atkinson, K. and Han, W. (2009) Theoretical Numerical Analysis. A Functional Analysis Framework, Springer Science+ Business Media. New York.
Coddington, E. A. (1989) An Introduction to Ordinary Differential Equations, Dover. Canada.
Michael Steele J. (2004) The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities (Maa Problem Books Series.), Cambridge University Press. Canada. DOI: https://doi.org/10.1017/CBO9780511817106
Lepage, W. R. (1980) Complex variables and the Laplace Transform form for Engineers , 3rd ed, Dovers. Canada.
Bence, S. J. Hobson, M. P. and Riley, K. F. (2006) mathematical methods for Physics and Engineering, 3rd ed, Cambridge University Press. Cambridge; New York,
Agoshkov, V. I. and Dobovski, P. B. (2000) Methods of Integral Transforms, institute of Numerical Mathematics. Russian Academy of Sciences. Moscow,
Abaoub, A. and Shkheam, A. (2020) The new integral transform (Abaoub- Shkheam transform), IAETSD JOURNAL FOR ADVANCED RESEARCH IN APPLIED SCIENCES, VII, 08–13.
Abaoub, A. and Shkheam, A. (2020) Utilization Abaoub-Shkheam transform in solving the Linear integral equation of Volterra, International journal of software and Hardware Research in Engineering(IJSHRE), 8, 771–831. https://doi.org/10.1002/cpa.3160350604. DOI: https://doi.org/10.1002/cpa.3160350604
Shkheam, A. and Abaoub, A. and Huwaydi, Y. (2021) Exact Solution of Linear Volterra integro-differential Equation of First Kind Using Abaoub-Shkheam Transform, International Journal of Research and Innovation in Applied Science (IJRIAS), 6, 60–64. https: //rsisinternational.org/ .
Mubayrash, A. and Zali , S. and alkawash, Z. (2021) The Use of Abaoub- Shkheam Transform for Solving Partial Differential Equations, alqurtas, 20, 67–74. https://alqurtas.alandalus-libya.org.ly/ojs/index. php/qjhar/article/view/619.
Elbhilil, N. and Bnis , M. and Altirban, A. (2021) Abaoub -Shkheam Transform Techniques to Solve Volterra Integral and Volterra Integro Differential Equations, African Journal of Advanced Pure and Applied Sciences (AJAPAS), 2, 254–260. Website:https://aaasjournals. com/index. Php/ajapas/index.
Mubayrash, A. (2022) Solving the partial Differential Equations Using the Modified Abaoub-Shkheam Adomian Decomposition Method, alqurtas. alandalus, 21, 70–83. Website:https://alqurtas. alandalus-libya.org.ly/ojs/index. Php/qjhar/article/view/687
Zali, S. (2023) Application of Abaoub-Shkheam Transform for Solving Linear Partial Integro – Differential Equation, Arab Journal of Sciences and Research Publishing (AJSRP), 19, 101–108. https://journals.ajsrp. com/index. Php/ajsrp DOI: https://doi.org/10.26389/AJSRP.L011222
Adomian, G. (1994) Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic, Dordrecht. DOI: https://doi.org/10.1007/978-94-015-8289-6
Al-Hayani, W. and Casasus, L. (2005) The Adomian decomposition method in turning point problems, Journal of Computational and Applied Mathematics, 177, 187–203. doi:10.1016/j.cam.2004.09.016. DOI: https://doi.org/10.1016/j.cam.2004.09.016
Mahmood, A. and Casas´us, L. and Al-Hayani, W. (2005) The decomposition method for stiff systems of ordinary differential equations, Applied Mathematics and Computation, 167, 964–975. DOI: 10.1016/j.physleta.2006.04.071. DOI: https://doi.org/10.1016/j.amc.2004.06.134
Mahmood, A. and Casas´us, L. (2006) Analysis of resonant oscillators with the Adomian decomposition method, Physics Letters A, 357, 306– 313.DOI:10.1016/j.physleta.2006.04.071. DOI: https://doi.org/10.1016/j.physleta.2006.04.071
Zhu, H. and Shu, H. and Ding, M.(2010) Numerical solutions of twodimensional Burgers’ equations by discrete Adomian decomposition method, Computers and Mathematics with Applications, 60, 840–848. .DOI:10.1016/j.camwa.2010.05.031. DOI: https://doi.org/10.1016/j.camwa.2010.05.031
Khan, Y. and Al-Hayani, W. (2013) A Nonlinear Model Arising in the Buckling Analysis and its New Analytic Approximate Solution, Z. Naturforsch, 68, 355–361. DOI:10.5560/ZNA.2013-0011. DOI: https://doi.org/10.5560/zna.2013-0011
Duan, J. and Chaolu, T. and Rach, R. and Lu, L. (2013) The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations, Computers and Mathematics with Application, 66, 728–736. doi:10.1016/j.camwa.2013.01.019. DOI: https://doi.org/10.1016/j.camwa.2013.01.019
Ganji, D. and Talarposhti, R. (2018) Numerical and Analytical Solutions for Solving Nonlinear Equations in Heat Transfer,, 728–736. DOI:10.4018/978-1-5225-2713-8 DOI: https://doi.org/10.4018/978-1-5225-2713-8
Duan, J. and Chaolu, T.and Rach, R. and Lu, L. (2012) Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the Rach–Adomian–Meyers modified decomposition method, International Journal of Innovative Technology and Exploring Engineering, 218, 8370–8392. doi:10.1016/j.amc.2012.01.063. DOI: https://doi.org/10.1016/j.amc.2012.01.063
Kaliyappan, M. and Hariharan, S. (2019) Nonlinear Differential Equations Using Adomian Decomposition Method Through Sagemath, Applied Mathematics and Computation, 8, 510–515. E3192038519/ 19BEIESP.
Al-Hayani, W. (2015) Adomian decomposition method with Green’s function for solving twelfth-order boundary value problems, Applied Mathematical Sciences, 9, 353–368. http://dx.doi.org/10.12988/ams. 2015.410861 DOI: https://doi.org/10.12988/ams.2015.410861
Abbaoui, K. and Cherruault, Y. (1995) New Ideas for Proving Convergence of Decomposition Methods ), Computers Math. Application. , 29, 103–108. DOI: https://doi.org/10.1016/0898-1221(95)00022-Q
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in our journal are licensed under CC-BY 4.0, which permits authors to retain copyright of their work. This license allows for unrestricted use, sharing, and reproduction of the articles, provided that proper credit is given to the original authors and the source.