Approximation in Weighted Space with Generalized Max-Product Type Favard-Szász-Mirakyan-Durrmeyer Operators

Article Sidebar

Main Article Content

Nasan ALSATTUF
Sevilay KIRCI SERENBAY

In this paper, we explore the uniform approximation of functions using Generalized Favard- Szász-Mirakyan -Durrmeyer operators of the max-product type with specific exponential weighted spaces. We analyze the approximation rate with an appropriate continuity modulus.

Approximation in Weighted Space with Generalized Max-Product Type Favard-Szász-Mirakyan-Durrmeyer Operators. (2024). International Journal of Latest Technology in Engineering Management & Applied Science, 13(10), 212-221. https://doi.org/10.51583/IJLTEMAS.2024.131025

Downloads

Downloads

Download data is not yet available.

References

Alsattuf, N. 2024. “Kesilmemiş maksimum çarpım tipindeki operatörlerin yaklaşım özellikleri”, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Harran Üniversitesi, Şanlıurfa.

Baruğ, F., Kırcı Serenbay, S. 2021. “Approximation of modified Favard Szasz-Mirakyan operators of maximum-product type”, Bull. Pure Appl. Sci. Sect. E Math. Stat 40.1: 60-69. DOI: https://doi.org/10.5958/2320-3226.2021.00006.0

Bede, B., Coroianu, L. and Gal, S.G., 2010. Approximation and shape preserving properties of the nonlinear Favard-Szàsz-Mirakjan operators of max-product kind.Filomat 24(3), 55—72 DOI: https://doi.org/10.2298/FIL1003055B

Bede, B. and Gal, S.G., 2010. Approximation by nonlinear Bernstein and Favard-Szász-Mirakjan operators of max-product kind. J. Concr. Appl. Math. 8(2), 193--207.

Bede, B., Coroianu, L. and Gal, S. G. Approximation by truncated Favard-Szasz-Mirakjan operator of max-product kind, Demonstratio Mathematica, 44 (2011), no. 1, 105--122. DOI: https://doi.org/10.1515/dema-2013-0300

Favard, J., 1944. Sur les multiplicateurs d'interpolation. J. Math. Pures Appl.23(9), 219--247.

Holhoş, A. Uniform weighted approximation by positive linear operators, Stud. Univ. Babe s-Bolyai Math., 56 (3) (2011), 135--146.

Holhoş, A. (2018). Weighted approximation of functions by Favard operators of max-product type. Periodica Mathematica Hungarica, 77(2), 340-346. DOI: https://doi.org/10.1007/s10998-018-0249-9

Kırcı Serenbay, S., Dalmanoğlu, Ö., Acar, E. 2022. “Approximation Properties of The Nonlinear Jain Operators”, Mathematical Sciences and Applications E-Notes, 10 (4), 179-189 DOI: https://doi.org/10.36753/mathenot.983767

Majeed, S. Y., Serenbay Kırcı, S. 2024. “On approximation by truncated max-product Baskakov operators of fuzzy numbers”. Filomat, 38(9), 3179-3191.

Majeed, S.Y., Serenbay Kırcı, S. 2023. “Analyzing Convergence of Fuzzy Numbers Using Generalized Max-Product Bernstein-Chlodowsky Operators on Compact Intervals”. Rare Metal Materials and Engineering, 52(9), 38-52.

Mazhar, S. M., Totik, V., 1985 Approximation by modified Szász operators, Acta. Sei. Math., 257-269

Mirakyan, G.M., 1941. Approximation des fonctions continues au moyen de polynômes de la form e^u=∑(u^k/k!) Dokl. Akad. Nauk SSSR 31, 201--205.

Szasz, O.,1950.Generalization of S. Bernstein's polynomials to the infinite interval. Journal of Research of the National Bureau of Standards, 45,239-245. DOI: https://doi.org/10.6028/jres.045.024

Article Details

How to Cite

Approximation in Weighted Space with Generalized Max-Product Type Favard-Szász-Mirakyan-Durrmeyer Operators. (2024). International Journal of Latest Technology in Engineering Management & Applied Science, 13(10), 212-221. https://doi.org/10.51583/IJLTEMAS.2024.131025

Similar Articles

You may also start an advanced similarity search for this article.