Approximation in Weighted Space with Generalized Max-Product Type Favard-Szász-Mirakyan-Durrmeyer Operators
Article Sidebar
Main Article Content
In this paper, we explore the uniform approximation of functions using Generalized Favard- Szász-Mirakyan -Durrmeyer operators of the max-product type with specific exponential weighted spaces. We analyze the approximation rate with an appropriate continuity modulus.
Downloads
Downloads
References
Alsattuf, N. 2024. “Kesilmemiş maksimum çarpım tipindeki operatörlerin yaklaşım özellikleri”, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Harran Üniversitesi, Şanlıurfa.
Baruğ, F., Kırcı Serenbay, S. 2021. “Approximation of modified Favard Szasz-Mirakyan operators of maximum-product type”, Bull. Pure Appl. Sci. Sect. E Math. Stat 40.1: 60-69. DOI: https://doi.org/10.5958/2320-3226.2021.00006.0
Bede, B., Coroianu, L. and Gal, S.G., 2010. Approximation and shape preserving properties of the nonlinear Favard-Szàsz-Mirakjan operators of max-product kind.Filomat 24(3), 55—72 DOI: https://doi.org/10.2298/FIL1003055B
Bede, B. and Gal, S.G., 2010. Approximation by nonlinear Bernstein and Favard-Szász-Mirakjan operators of max-product kind. J. Concr. Appl. Math. 8(2), 193--207.
Bede, B., Coroianu, L. and Gal, S. G. Approximation by truncated Favard-Szasz-Mirakjan operator of max-product kind, Demonstratio Mathematica, 44 (2011), no. 1, 105--122. DOI: https://doi.org/10.1515/dema-2013-0300
Favard, J., 1944. Sur les multiplicateurs d'interpolation. J. Math. Pures Appl.23(9), 219--247.
Holhoş, A. Uniform weighted approximation by positive linear operators, Stud. Univ. Babe s-Bolyai Math., 56 (3) (2011), 135--146.
Holhoş, A. (2018). Weighted approximation of functions by Favard operators of max-product type. Periodica Mathematica Hungarica, 77(2), 340-346. DOI: https://doi.org/10.1007/s10998-018-0249-9
Kırcı Serenbay, S., Dalmanoğlu, Ö., Acar, E. 2022. “Approximation Properties of The Nonlinear Jain Operators”, Mathematical Sciences and Applications E-Notes, 10 (4), 179-189 DOI: https://doi.org/10.36753/mathenot.983767
Majeed, S. Y., Serenbay Kırcı, S. 2024. “On approximation by truncated max-product Baskakov operators of fuzzy numbers”. Filomat, 38(9), 3179-3191.
Majeed, S.Y., Serenbay Kırcı, S. 2023. “Analyzing Convergence of Fuzzy Numbers Using Generalized Max-Product Bernstein-Chlodowsky Operators on Compact Intervals”. Rare Metal Materials and Engineering, 52(9), 38-52.
Mazhar, S. M., Totik, V., 1985 Approximation by modified Szász operators, Acta. Sei. Math., 257-269
Mirakyan, G.M., 1941. Approximation des fonctions continues au moyen de polynômes de la form e^u=∑(u^k/k!) Dokl. Akad. Nauk SSSR 31, 201--205.
Szasz, O.,1950.Generalization of S. Bernstein's polynomials to the infinite interval. Journal of Research of the National Bureau of Standards, 45,239-245. DOI: https://doi.org/10.6028/jres.045.024
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in our journal are licensed under CC-BY 4.0, which permits authors to retain copyright of their work. This license allows for unrestricted use, sharing, and reproduction of the articles, provided that proper credit is given to the original authors and the source.