Detection of Brain Tumor using Medical Images: A Comparative Study of Machine Learning Algorithms – A Systematic Literature Review
Article Sidebar
Main Article Content
Abstract: Background: Brain tumors are a significant global health concern impacting both adults and children. Tumors are characterized by abnormal or excessive growth resulting from uncontrolled cell division. Diagnosing brain tumors poses various challenges, including limited funding, a shortage of qualified professionals, and insufficient access to medical facilities in remote regions. Different learning techniques for detecting brain tumors have been developed due to their ease of use, cost-effectiveness, and non-invasive nature, in contrast to other invasive methods.
Methods: This research conducts a systematic literature review to explore modern trends and concepts of machine learning in healthcare, aiming to identify effective techniques for brain tumor detection. It also compares and analyzes the most efficient machine learning methods currently in use, focusing on aspects such as machine learning algorithms, image augmentation, evaluation metrics, and the sizes of datasets employed. Results: The findings indicate that non-invasive methods, such as machine learning algorithms for brain tumor detection, are cost-effective and provide quick results. Conclusions: This systematic literature review offers a technical overview, demonstrating the efficiency and effectiveness of machine learning techniques in making brain tumor detection feasible. The study utilizes deep learning and machine learning methods to comprehensively analyse diagnosis, imaging, and clinical evaluations in medical fields related to brain tumor detection.
Downloads
Downloads
References
(Samee et al., 2022. (2022). Building Efficient Neural Networks For Brain Tumor Detection. 6(11), 222–235.
A. Rohini1, Carol Praveen2, Sandeep Kumar Mathivanan3, V. Muthukumaran4, Saurav Mallik5, 6, & Mohammed S. Alqahtani7, 8, A. A. and B. O. S. (2023). Multimodal hybrid convolutional neural network based brain tumor grade classification. BMC Bioinformatics, 1–20. https://doi.org/10.1186/s12859-023-05518-3 DOI: https://doi.org/10.1186/s12859-023-05518-3
Aafreen, S., Zarreen, I., Ahemad, A., & Razzaque, P. A. (2022). Brain Tumor Detection using Deep Learning. 4(4), 41–45. https://doi.org/10.35629/5252-04044145
Abbood, A. A., Shallal, Q. M., & Fadhel, M. A. (2021). Automated brain tumor classification using various deep learning models : a comparative study. 22(1), 252–259. https://doi.org/10.11591/ijeecs.v22.i1.pp252-259 DOI: https://doi.org/10.11591/ijeecs.v22.i1.pp252-259
Abdelgawad, M. I. M. M. M. and A. (2023). A Deep Analysis of Brain Tumor Detection from MR Images Using Deep Learning Networks. 1–19.
Acharya, J., & Shiroishi, M. S. (2021). Neural Networks. ORIGINAL RESEARCH ADULT BRAIN, 233–239.
Al-ayyoub, M., Alabed-alaziz, A., & Darwish, O. (2012). Machine Learning Approach for Brain Tumor Detection. (April). https://doi.org/10.1145/2222444.2222467 DOI: https://doi.org/10.1145/2222444.2222467
Al-tamimi, M. S. H., & Sulong, G. (2015). Tumor Brain Detection Through MR Images : A Review of Literature TUMOR BRAIN DETECTION THROUGH MR IMAGES : A. (April).
Ali, S., Li, J., Pei, Y., Khurram, R., Rehman, K., & Mahmood, T. (2022). A Comprehensive Survey on Brain Tumor Diagnosis Using Deep Learning and A Comprehensive Survey on Brain Tumor Diagnosis Using Deep Learning and Emerging Hybrid Techniques with Multi ‑ modal MR Image. Archives of Computational Methods in Engineering, (May). https://doi.org/10.1007/s11831-022-09758-z DOI: https://doi.org/10.1007/s11831-022-09758-z
Almadhoun, H. R., & Naser, S. S. A. (2022). Detection of Brain Tumor Using Deep Learning. 6(3), 29–47.
Amin, J., Sharif, M., Haldorai, A., Yasmin, M., & Sundar, R. (2022). Brain tumor detection and classification using machine learning : a comprehensive survey. Complex & Intelligent Systems, 8(4), 3161–3183. https://doi.org/10.1007/s40747-021-00563-y DOI: https://doi.org/10.1007/s40747-021-00563-y
Anagun, Y. (2023). Smart brain tumor diagnosis system utilizing deep convolutional neural networks. Multimedia Tools and Applications, 44527–44553. https://doi.org/10.1007/s11042-023-15422-w DOI: https://doi.org/10.1007/s11042-023-15422-w
Anaraki, A. K., Ayati, M., & Kazemi, F. (2018). ScienceDirect Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Integrative Medicine Research, 1–12. https://doi.org/10.1016/j.bbe.2018.10.004 DOI: https://doi.org/10.1016/j.bbe.2018.10.004
Azshafarrah, T., Komar, T., Mahamad, A. K., Saon, S., & Mudjanarko, S. W. (2023). Investigation of VGG-16 , ResNet-50 and AlexNet Performance for Brain Tumor Detection. International Journal of Online and Biomedical Engineering, 19(08), 97–109. DOI: https://doi.org/10.3991/ijoe.v19i08.38619
Bahadure, N. B., Ray, A. K., & Thethi, H. P. (2017). Image Analysis for MRI Based Brain Tumor Detection and Feature Extraction Using Biologically Inspired BWT and SVM. 2017. DOI: https://doi.org/10.1155/2017/9749108
Bi, W. L., Hosny, A., Schabath, M. B., Giger, M. L., Birkbak, N. J., Mehrtash, A., … Hoffmann, U. (2019). Artificial Intelligence in Cancer Imaging : Clinical Challenges and Applications. 0(0), 1–31. https://doi.org/10.3322/caac.21552 DOI: https://doi.org/10.3322/caac.21552
Biswas, A., & Islam, S. (2023). A Hybrid Deep CNN-SVM Approach for Brain Tumor Classification. 9(1), 1–15. DOI: https://doi.org/10.20473/jisebi.9.1.1-15
C, N. O., & Shruti, K. (2017). BRAIN TUMOR DETECTION AND EXTRACTION USING ARTIFICAL NEURAL NETWORK FROM MRI IMAGES. (4), 80–87.
Deepak, S., & Ameer, P. M. (2019). Brain tumor classi fi cation using deep CNN features via transfer learning. Computers in Biology and Medicine, 111(June), 103345. https://doi.org/10.1016/j.compbiomed.2019.103345 DOI: https://doi.org/10.1016/j.compbiomed.2019.103345
Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y., & Heart, N. (2011). Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks. 1–12.
Earning, D. E. E. P. L., Ahmed, M., Ibrahim, R., Ahmed, M., & Hassan, M. (2023). B RAIN T UMOR CLASSIFICATION AND S EGMENTATION USING.
Elshaikh, B. G., Omer, H., Garelnabi, M. E. M., Sulieman, A., Abdella, N., Algadi, S., & Toufig, H. (2021). Incidence , Diagnosis and Treatment of Brain Tumours. Journal of Research in Medical and Dental Science, Volume 9(Issue 6), age No: 340-347.
Farmanfarma, K. H. K., Mohammadian, M., Shahabinia, Z., Hassanipour, S., & Salehiniya, H. (2019). BRAIN CANCER IN THE WORLD : AN EPIDEMIOLOGICAL REVIEW. World Cancer Reserach Journal, 1–5.
Ghosal, P., Nandanwar, L., & Kanchan, S. (2019). Brain Tumor Classification Using ResNet-101 Based Squeeze and Excitation Deep Neural Network. (February). https://doi.org/10.1109/ICACCP.2019.8882973 DOI: https://doi.org/10.1109/ICACCP.2019.8882973
Gordon, M. (2021). An increasing number of convolutional neural networks for fracture recognition and classification in orthopaedics ARE THESE EXTERNALLY VALIDATED AND READY FOR CLINICAL. 2(10), 879–885. https://doi.org/10.1302/2633-1462.210.BJO-2021-0133 DOI: https://doi.org/10.1302/2633-1462.210.BJO-2021-0133
Gutta, S., Acharya, J., Shiroishi, M. S., & Hwang, D. (2024). Neural Networks. 42(2), 233–239. DOI: https://doi.org/10.3174/ajnr.A6882
Hossain, T., Shishir, F. S., Ashraf, M., & Alpha, P. (2019). Brain Tumor Detection Using Convolutional Neural Network. (June 2020). https://doi.org/10.1109/ICASERT.2019.8934561 DOI: https://doi.org/10.1109/ICASERT.2019.8934561
Hussein, E. M., Mahmoud, D., & Mahmoud, A. (2012). Brain Tumor Detection Using Artificial Neural Networks. 13(2), 31–39.
Islam, S., Rahman, A., Debnath, T., Karim, R., Kamal, M., Band, S. S., … Dehzangi, I. (2022). Accurate brain tumor detection using deep convolutional neural network. Computational and Structural Biotechnology Journal, 20, 4733–4745. https://doi.org/10.1016/j.csbj.2022.08.039 DOI: https://doi.org/10.1016/j.csbj.2022.08.039
Jadhav, S. R., Salve, S. S., Mohagaonkar, H. S., Rakibe, A. D., & Langade, N. G. (2020). Brain Tumor Detection using Convolutional Neural Network. 1232–1236.
Jia, X., Shkolyar, E., & Laurie, M. A. (2021). Evolution in diagnosis and detection of brain tumor – review. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/2115/1/012039 DOI: https://doi.org/10.1088/1742-6596/2115/1/012039
Joseph, R. (2023). Brain Tumor Detection & Classification Using Machine Learning. 11(01). DOI: https://doi.org/10.22214/ijraset.2023.57529
Khaliki, M. Z., & Başarslan, M. S. (2024). Brain tumor detection from images and comparison with transfer learning methods and 3 ‑ layer CNN. Scientific Reports, (0123456789), 1–10. https://doi.org/10.1038/s41598-024-52823-9 DOI: https://doi.org/10.1038/s41598-024-52823-9
Kibriya, H., Amin, R., Alshehri, A. H., Masood, M., Alshamrani, S. S., & Alshehri, A. (2022). A Novel and Effective Brain Tumor Classification Model Using Deep Feature Fusion and Famous Machine Learning Classifiers. 2022. DOI: https://doi.org/10.1155/2022/7897669
Kitsios, F., Kamariotou, M., & Syngelakis, A. I. (2023). applied sciences Recent Advances of Artificial Intelligence in Healthcare : A Systematic Literature Review. DOI: https://doi.org/10.3390/app13137479
Krishnapriya, S., & Karuna, Y. (2017). Pre-trained deep learning models for brain MRI image classification.
Kuraparthi, S., Reddy, M. K., Sujatha, C. N., Valiveti, H., & Duggineni, C. (2021). Traitement du Signal Brain Tumor Classification of MRI Images Using Deep Convolutional Neural Network. 38(4), 1171–1179. DOI: https://doi.org/10.18280/ts.380428
Lan, Y. (2023). Potential roles of transformers in brain tumor diagnosis and treatment. (June). https://doi.org/10.1002/brx2.23 DOI: https://doi.org/10.1002/brx2.23
Mangla, R. (2022). Brain tumor detection and classification by MRI images using deep learning techniques. International Journal of Health Sciences, 6(March), 5783–5790. DOI: https://doi.org/10.53730/ijhs.v6nS3.7233
Menze, B. H., Jakab, A., Bauer, S., Kalpathy-cramer, J., Farahani, K., Kirby, J., … Prastawa, M. (2015). The Multimodal Brain Tumor Image Segmentation Benchmark ( BRATS ). 34(10), 1993–2024. https://doi.org/10.1109/TMI.2014.2377694 DOI: https://doi.org/10.1109/TMI.2014.2377694
Miah, J., Cao, D. M., Sayed, A., Taluckder, S., Haque, S., & Mahmud, F. (2024). Advancing Brain Tumor Detection : A Thorough Investigation of CNNs , Clustering , and SoftMax Classification in the Analysis of MRI Images .
Nalepa, J., Marcinkiewicz, M., & Kawulok, M. (2019). Data Augmentation for Brain-Tumor Segmentation : A Review. 13(December), 1–18. https://doi.org/10.3389/fncom.2019.00083 DOI: https://doi.org/10.3389/fncom.2019.00083
Naveen, V. A., Sudeep, N. R., Sharath, S. B., Sakhare, V. K., & Yadav, Y. (2021). Brain Tumor Detection Using Machine Learning Approach. (07), 1640–1648.
Raghavapudi, H., Singroul, P., & Kohila, V. (2021). Brain Tumor Causes, Symptoms, Diagnosis and Radiotherapy Treatment. (January). https://doi.org/10.2174/1573405617666210126160206 DOI: https://doi.org/10.2174/1573405617666210126160206
Rasool, M., Ismail, N. A., Boulila, W., Ammar, A., Samma, H., Yafooz, W. M. S., & Emara, A. M. (2022). A Hybrid Deep Learning Model for Brain Tumour Classification. DOI: https://doi.org/10.3390/e24060799
Reszke, M., & Smaga, Ł. (2023). Machine learning methods in the detection of brain tumors. 60(2), 125–148. https://doi.org/10.2478/bile-2023-0009 DOI: https://doi.org/10.2478/bile-2023-0009
Saad, G., Suliman, A., Bitar, L., & Bshara, S. (2023). Developing a hybrid algorithm to detect brain tumors from MRI images. Egyptian Journal of Radiology and Nuclear Medicine. https://doi.org/10.1186/s43055-023-00962-w DOI: https://doi.org/10.1186/s43055-023-00962-w
Saeedi, S., Rezayi, S., Keshavarz, H., & Kalhori, S. R. N. (2023). MRI ‑ based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. BMC Medical Informatics and Decision Making, 6, 1–17. https://doi.org/10.1186/s12911-023-02114-6 DOI: https://doi.org/10.1186/s12911-023-02114-6
Sarkar, A., Alahe, M. A., & Ahmad, M. (2023). An Effective and Novel Approach for Brain Tumor Classification Using AlexNet CNN Feature Extractor and Multiple Eminent Machine Learning Classifiers in MRIs. 2023. DOI: https://doi.org/10.1155/2023/1224619
Shohag, A., Aktar, R., Science, N., & Imtiaz, M. H. (2015). Design and Development of a Brain Tumor Detection System Based on MRI. (October 2019).
Suchetha, N. V, Bhat, A., Hegde, A., Mallikarjun, M., & Karthik, S. R. (2023). Brain Tumor Detection Using a Deep Learning Model. 6(11), 801–805. DOI: https://doi.org/10.48047/ijfans/v11/i12/197
Susan M. Chang, M., Erin Dunbar, M., Virginia Dzul-Church, M., Laura Koehn, M., & Margaretta S. Page, RN, M. (2015). End-of-Life Care for Brain Tumor Patients End-of-Life Care for Brain Tumor Patients.
Swarup, C., Singh, K. U., Kumar, A., & Pandey, S. K. (2023). Brain tumor detection using CNN , AlexNet & GoogLeNet ensembling learning approaches. 31(March), 2900–2924. https://doi.org/10.3934/era.2023146 DOI: https://doi.org/10.3934/era.2023146
Tasci, E., Zhuge, Y., Kaur, H., Camphausen, K., & Krauze, A. V. (2022). Hierarchical Voting-Based Feature Selection and Ensemble Learning Model Scheme for Glioma Grading with Clinical and Molecular Characteristics. DOI: https://doi.org/10.3390/ijms232214155
Troyanskaya, O., Trajanoski, Z., Carpenter, A., Thrun, S., Razavian, N., & Oliver, N. (2020). Artificial intelligence and cancer. Nature Cancer, 1(February), 149–152. https://doi.org/10.1038/s43018-020-0034-6 DOI: https://doi.org/10.1038/s43018-020-0034-6
Vermeulen, C., Kester, L., Kranendonk, M. E. G., Wesseling, P., Verburg, N., Hamer, P. W., … Ridder, J. (2023). Ultra-fast deep-learned CNS tumour classification during surgery. 622(February). https://doi.org/10.1038/s41586-023-06615-2 DOI: https://doi.org/10.1101/2023.01.25.23284813
Vimala, B. B., Srinivasan, S., Mathivanan, S. K., Jayagopal, P., & Dalu, G. T. (2023). Detection and classification of brain tumor using hybrid deep learning models. Scientific Reports, 1–17. https://doi.org/10.1038/s41598-023-50505-6 DOI: https://doi.org/10.1038/s41598-023-50505-6
Williams, J., Appiahene, P., & Timmy, E. (2023). Informatics in Medicine Unlocked Detection of anaemia using medical images : A comparative study of machine learning algorithms – A systematic literature review. Informatics in Medicine Unlocked, 40(May), 101283. https://doi.org/10.1016/j.imu.2023.101283 DOI: https://doi.org/10.1016/j.imu.2023.101283
Xie, Y., Zaccagna, F., Rundo, L., Testa, C., Agati, R., Lodi, R., … Tonon, C. (2022). Convolutional Neural Network Techniques for Brain Tumor Future Perspectives.
Xu, C., Peng, Y., Zhu, W., Chen, Z., Li, J., Tan, W., … Chen, X. (2022). An automated approach for predicting glioma grade and survival of LGG patients using CNN and radiomics. (August), 1–12. https://doi.org/10.3389/fonc.2022.969907 DOI: https://doi.org/10.3389/fonc.2022.969907
All articles published in our journal are licensed under CC-BY 4.0, which permits authors to retain copyright of their work. This license allows for unrestricted use, sharing, and reproduction of the articles, provided that proper credit is given to the original authors and the source.