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Abstract: The paper highlights a failure in the implementation of a recommendation for the modified Newton’s method using a 

Rosenbrock type of functions that have slow convergence with two minimum points as test functions. The study finds that a 

recommended procedure, if the Hessian )( kxH  at a point is not positive definite, may not lead to the desired optimal solution 

particularly when the initial point is not close enough to the expected solution. It has been demonstrated how to go round this 

problem. The results show that more than one technique may be required to determine all critical points of a given function. 
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I. Introduction 

In some gradient-based unconstrained optimization techniques a non-positive definite Hessian matrix of the problem function 

possesses challenges for convergence of the solution. For the Newton’s method in particular, various modifications have been 

suggested (e.g., Fiacco & McCormick, 1967; Marquardt, 1963) that incorporates the Steepest Descent (SD) method to obtain a 

new direction that probably will help to get to the minimum. 

The convergence rate of an optimization problem may be influenced by a number of factors that includes the role of the 

underlying optimization method. Others involves the global or local nature of the convergence (Lewis & Nash, 2006). For studies 

on convergence, a typical test function of the type of the Rosenbrock’s function (Emiola & Adem, 2021) comes handy for 

studying robustness of gradient-based optimization algorithms. 

In Section 2, we provide a description of the illustrative problem functions and review how the upper bound on the convergence 

rate, expressed as a function of the level of ill-conditioning, poses a challenge for the optimization process. It is known that 

obtaining the desired critical point depends on the initial point. We demonstrate in this paper that with the appropriate search 

direction, it is possible to reach the desired optimal point even with a (reasonably) distant starting point and for highly ill-

conditioned problem function for the Newton’s method. In Section 3, the Newton’s method as well as the Modified Newton’s 

method is presented. In the process, the problem of interest of the study is highlighted that points out the failure in convergence in 

spite of known recommendations in the literature and prescribes a remedy. Throughout the implementations, we set a tolerance of 
510 for which ]0;0[)(  kf x  for a function   pf : . In Section 4, the summary of the proposed procedure is 

presented and followed by the conclusion. 

II. Illustrative Functions and Effect of Ill-Conditioning on Convergence 

Two main types of functions are used in this paper. The functions are selected to illustrate the effect of ill-conditioning on the 

determination of optimal points. 

Test Function I 

We consider the problem of minimizing the function 

                           
2

221

4

11 )1()( xxxxf x            

(2.1) 

The graph of 𝑓1(𝑥)  with almost flat base is given in Figure 1. The graph shows that locating a minimum of the function would 

pose a challenge.  
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Figure 1: Graph of  
2
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11 )1()( xxxxf x  

Using the same starting point ]0;0[0 x , the Newton’s method and Conjugate Gradient method, respectively, lead to two 

different critical points given as ]084945.0;204128.0[    and   ]34794.1;69588.0[   

The results show that )(1 xf  has multiple critical points which may be difficult to detect using a single method. The paper 

highlights the challenge in using the modified Newton’s method to arrive at the same point as obtained by the Conjugate Gradient 

method. 

Test Function II 

We consider the problem of minimizing the Rosenbrock’s function given as 

2

1

22

122 )1()(100)( xxxf x   

 (2.2)           

using the steepest descent (SD) method. Table 1 gives some iterates in the application of the SD to the function using a starting 

point ]0;0[0 x . 

Table 1: Number of iterations and condition number of the Hessian of f2(x) 

Iterate (k) 𝐱 κ(H) 

0 [0; 0] 100.00 

1 [0.15541; 0] 20.829 

10 [0.31095; 0.08560] 60.578 

100 [0.58593; 0.33975] 331.81 

1000 [0.92741; 0.85909] 1653.2 

From the table, there is slow rate of convergence of )(2 xf which can be attributed to a large condition number, ).(H  Even 

after 1000 iterations, the algorithm shows only slow convergence to the exact minimum ]1;1[ . The graph of )(2 xf  within the 

interval 

)2:1.0:2,2:1.0:2(],[ YX  is given in Figure 2. 

 

Figure 2: Graph of the Rosenbrock’s Function 
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The rate of convergence of the function is explained by the long-valley base as shown in Figure 2. In spite of this, there is a single 

minimum point of the function. 

The observations illustrate a major weakness of the SD method that it is not appropriate when the Hessian matrix is ill-

conditioned. They also show that the determination of a minimum point of )(1 xf  could be more daunting than that of )(2 xf . It 

will be seen in the next section that the implementation of the SD for )(1 xf  converges after a few iterations rather to a point in 

the neighbourhood of the initial point but not to the desired optimum point. 

Linear Convergence for the Case of a Quadratic Function 

An algorithm exhibits linear convergence in the objective function values if there is a constant 𝛿 < 1  such that for all k 

sufficiently large, the iterates kx  satisfy the expression 











)()(

)()( 1

xx

xx

ff

ff

k

k        

 (2.3) 

where 
x  is some optimal point of the problem. By this statement, the optimality gap shrinks by at least δ at each iteration and 

speeds up the rate of convergence if 𝛿 is not close to 1. Consider the case in which the objective function )(xf  is a simple 

quadratic function of the form 

xbAxxx
TTf 

2

1
)(

 

, 

where A is a positive definite symmetric matrix, and suppose that the eigenvalues of A are .021  p 
 

The optimal 

solution of the problem is computed as 

bAx
1 

 
and by direct substitution, the optimal objective function value is 

bAbx
1

2

1
)(   Tf  

 

Let kx denote the current point in the SD algorithm and let  kd  denote the current direction given by 

bAxxd  kkk f )(        

 (2.4) 

To obtain the next iterate of the SD algorithm, we compute the step size, 𝛼, by considering 

k

T

kk

T

kk

kk

T

kk

T

kkkk

f

f

Addddx

dxbdxAdxdx

2

2

1
)(

)()()(
2

1
)(








 

Optimizing the value of    therefore yields  
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and the next iterate is given as 
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From the results above, we obtain 
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By the Kantorovich inequality, an upper bound on the value of β is given (Huang & Zhou, 2005) as 

𝛽 ≤
(𝜆1 + 𝜆𝑝)
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Now, applying this inequality in Equation (2.3) gives (Freund, 2004) 
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Since by definition 1)( 1 
p


 H , if the ratio is large, then the convergence constant 𝛿 will be close to (slightly smaller than) 

1, which slows down the convergence rate. Thus, a much smaller value than 1 of 𝛿 is desired. 

Example 

Consider 𝑓2(𝑥) in Equation (2.2). With a starting point of 𝒙0 = [0; 0], the descent direction  

 ]0;2[)( 0  xd f .

 

Table 2 gives the sensitivity of SD convergence rate to the eigenvalue ratio. 

Table 2: Sensitivity of SD Convergence Rate to the Eigenvalue Ratio 

λ1 λp Upper Bound on δ k κ(H) 

237.21622 7.97875 0.87407 2 29.731 

279.17358 4.60848 0.93609 10 60.578 

476.63669 1.43646 0.98800 100 331.81 

744.95842 0.66666 0.99634 500 1117.4 

889.92511 0.53830 0.99757 1000 1653.2 

From Table 2, )(H  keeps increasing as we increase the number of iterations, k. It also shows the effect of the relationship 

between 𝑘(𝑯) and the upper bound on 𝛿 on the convergence rate. We see that the convergence constant ranges from 0.87407 to 

0.99757, implying that for functions of the type 𝑓2(𝒙), the convergence rate of SD could be extremely slow. 

III. Methods and Illustrative Problem 

Newton’s Method 

The multi-dimensional Newton’s method finds a stationary point of  pf :  by solving the non-linear system of equations 

.0)(  xf
 

Alternatively, using the Taylor series for a function of several variables gives 

 ))(()(
2

1
)()()()( 000000 xxxHxxxxxxx
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 (3.1) 

Where )(xH  (also denoted by  ∇2𝑓(𝒙)) is the Hessian matrix, if we take 0x  to be  
x , and since ∇𝑓(𝒙∗) is zero, we have 
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Since 𝑓(𝒙∗) is the local minimum value of 𝑓, it must follow that 

0))(()(  
xxxHxx

T
 

at least for x  near 
x . Using Newton’s method to find the roots of  ∇𝑓(𝑥) = 0, we arrive at the minimization method (assuming 

that  )( 
xH  is positive definite) 

)()(1

1 kkkk f xxHxx  

  

Hence, 

)())(( 1 kkkk f xxxxH          

 (3.2) 

We seek now to: 
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1. solve for the step  kkk xx  1 ; 

2. compute  1kx  from  kkk  xx 1 . 

The Illustrative Problem 

We consider the minimization problem 

2

221

4

11 )1()(:min xxxxf x  

Using an initial guess of  ]25.1;75.0[0 x  we obtain  ]2500.0;43750.0[)( 0  xf  and 











21

174999.6
)( 0xH . By repeated use of Equation (3.2), we obtain the results in Table 3. 

Table 3: Iterations for minimizing 𝑓1(𝒙)  using the Newton’s method 

k xk ∇f (xk) 

0 [0.75; -1.25] [0.43750; 0.25000] 

1 [0.70; -1.35] [2.2 × 10−2; −5.5511 × 10−12] 

2 [0.69591; -1.34796] [1.3104 × 10−4; −1.0 × 10−5] 

3 [0.69588; -1.34794] [−2.3294 × 10−5; 5.5511 × 10−12] 

Thus, from Table 3,  ]0;0[)( 3  xf   and  









99999.11

181097.5
)( 3xH   is positive definite.  

Thus,  ]34794.1;69588.0[3 x   is a minimum point of )(xf . As noted in Section 2, the minimum point of this function 

under Conjugate Gradient method is the same as 𝒙3  and is attained in just one iteration with the starting point ]0;0[0 x
 
which 

is farther away from 3x  than the starting point  ]25.1;75.0[0 x
 
used in this case. This presents the problem of interest in 

this paper. 

Now, suppose that ]0;0[0 x in this example. Then, ]2;0[)( 0  xf and  









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21

10
)( 0xH .    which is indefinite and hence a saddle point at ]0;0[0 x . This means that the expression  

)()(1

kk f xxH 
 in the Newton’s method fails to be a descent direction. 

To ensure a descent direction, we make use of an alternative direction 𝒗𝑘  which is the eigenvector corresponding to the negative 

eigenvalue of the Hessian matrix at kx  in the SD method. That is, 

kkkk  xx 1        

 (3.3) 

Using this method, we compute the various iterates for given values of the step size 𝛼𝑘  and .k  These iterations are given in 

Table 4.  

Table 4: Optimization of )(1 xf
 
for various step sizes under SD method 

k 
k  .k  kx  

0 0.21571 [-0.92388; 0.38268] [0; 0 0] 

1 0.0051142 [ -0.89608; 0.44388] [-0.199292; 0.082549] 
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2 0.00024236 [-0.89451; 0.44704] [-0.203875; 0.084819] 

3 0.000040420 [-0.89444; 0.44719] [-0.204092; 0.084927] 

4 0.000040420 [-0.89443 ; 0.44722] [-0.204128; 0.084945] 

5 0.000040420 [-0.89443 ; 0.44722] [-0.204128; 0.084945] 

We see from Table 4 that the iterations converge after four iterations to the critical point [−0.204128; 0.084945]. It is interesting 

to note that this minimum point is different from [0.69588; −1.34794] obtained under the Conjugate Gradient method after only 

one iteration, and under the Newton’s method after three iterations using the initial point [0.75; −1.25]. 

The situation encountered so far is that the Hessian at a point is indefinite and therefore could not continue with the Newton’s 

method. At this point, the steps taken to obtain a positive definite Hessian basically combines the Newton’s method with the SD 

method. It should be noticed that even though this combined approach (McMormick & Fiacco, 1967) produces a solution, this 

solution is not what is intended (see Table 3). To achieve the desired result, we first review the modified Newton’s method. 

Modified Newton’s Method 

In the Newton’s method, 

)()(1

1 kkkk f xxHxx  

  

the expression  

)()(1

kkk fs xxH  
                       

 (3.4) 

is a descent direction if )(1

kxH


 is positive definite. The algorithm for damped Newton’s method is 

)()(1

1 kkkkk f xxHxx  

                        

 (3.5) 

for some damping sequence       

   ,10,}{ 0 

 kkk    and    1k   as   k .   

When  )()(1

kk f xxH 
is not a descent direction, a modified Newton’s method substitutes a descent direction 𝑠𝑘  for  

)()(1

kk f xxH 
 From Equation (3.5), the modified Newton’s method becomes the SD method 

         𝒙𝑘+1 = 𝒙𝑘 − 𝛼𝑘∇𝑓(𝒙𝑘) ,                                                                                 (3.6) 

by taking  IxH  )(1

k , the identity matrix. In most cases, it is still possible to compute 𝑠𝑘  from 

Equation (3.4)  and to search along ±𝑠𝑘, the sign chosen to ensure a descent direction. 

A theoretical argument against the generalized Newton’s method is that if )( kxH is not a positive definite matrix, a move in the 

direction given by Equation (3.5) where 0k   is chosen to minimize 𝑓 along  ks  in Equation (3.4) starting from 𝑥𝑘, may 

result in an increase rather than a decrease in 𝑓(𝑥), yielding 𝛼𝑘 = 0, which terminate the process at 𝑥𝑘. Another objection is that 

)( kxH  may not have an inverse, even if 𝑓(𝑥) is convex. The modified second-order method takes into account these two 

objections. The direction vector 𝑠𝑘  is generated according to two rules (McMormick & Fiacco, 1967). In both cases, 

kkkk s xx 1  

where 𝛼𝑘  is chosen to be the smallest value of 𝛼 ≥ 0 for which 𝒙𝑘 + 𝛼𝑘𝑠𝑘  gives a local minimum of 𝑓(𝑥). The rules are as 

follows: 

1. If )( kxH  has a negative eigenvalue, let 𝑠𝑘  be a vector where 

0)( kk

T

k ss xH  and  0)(  k

T

k fs x    
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2. If 𝐇(𝑥𝑘)  has all eigenvalues greater than or equal to zero, choose 𝒔𝑘  such that either  

𝐇(𝑥𝑘)𝑠𝑘 = 0 ,  and   0)(  k

T

k fs x  

or 

)()( kkk fs xxH         

 (3.7)  

The rationale for Rule 1 is that if the second partial derivative matrix has a negative eigenvalue there are certain directions along 

which the function 𝑓(𝑥) decreases and along which the rate of decrease also decreases. Now, to obtain 𝑠𝑘, we use the 

factorization 

T

k LDLxH )(        

 (3.8) 

where L is a non-singular lower triangular matrix and ),,,(diag 21 pddd D . The conditions for the factorization are as 

follows: 

1. If D has all positive diagonal elements, solve for  )()(1

kkk fs xxH  
.. 

2. If D has all non-negative diagonal elements, and at least one is zero, the vector 𝒔𝑘  is generated according to the second 

rule above. 

3. If D has some diagonal elements that are negative, solve ,k

T
avL    where 



 


otherwise,0

0if,1 k
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Let  

    










otherwise,

0)(if,

v

xvv k

T

k

f
s  

Other forms of modification are to: 

1. Modify the Newton’s search direction by giving it a bias towards the steepest descent vector −∇𝑓(𝒙𝑘)  (Levenberg, 

1944; Marquardt, 1963). This is achieved by adding a scalar multiple of the unit matrix to 𝐇(𝑥𝑘) and solving the system 

  )())(( kkk fs xIxH   

to obtain v so that the matrix IxH )( k  
 is positive definite. 

2. Modify the Hessian matrix in the form (Murray, 1972; Hebden, 1973) as 

  DxH )( k  

where D is diagonal and it is used to determine the search direction. The modification occurs as the matrix is being factorized. 

The Illustrative Problem Continued 

For 𝑓1(𝒙) with a starting point of 𝒙𝟎 =  [0;  0], it has already been found that 𝑯(𝑥0) is indefinite and that 

)()(1

kkk fs xxH  

 
is not a descent direction. Therefore, we look for a new direction, v. The Newton’s method then 

becomes kkkk vxx 1 . 

To obtain v, we factorize the Hessian matrix H(x0) as in Equation (3.8) to obtain 













5.00

02
D . 
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Now, because a diagonal entry is negative, we use the third condition to obtain 𝒂 =  [0; 1], and hence 𝐯 =  [1; −0.5] which is 

the required descent direction. Using the SD algorithm to compute the first iterate, we obtain ]10181.0;20363.0[1 x   with 

the Hessian 











99999.11

149758.0
)( 1xH  

which is not positive definite. The process therefore cannot continue. Thus, the recommendation of Fiacco and McCormick 

(1967) seizes to work. 

In order to overcome this problem, we need to search along a different direction which is in the same direction as v. We observe 

that if we choose ]86608.0;23656.0[)( 12  xx f , the Hessian given as 











21

167150.0
)( 2xH  

is positive definite. We then switch back to the Newton’s method to continue with the process. Table 5 shows the iterations of the 

process. 

Table 5: Optimization process for 𝑓1(𝒙) using Modified Newton’s method 

Method k 𝒙𝑘 ∇𝑓(𝒙𝑘) 𝑓(𝒙𝑘) 

 0 [0; 0] [0; 2] 1 

Steepest 1 [-0.20363; 0.10181] [0.068041;  2] 1.1950 

Newton 2 [-0.23656; -0.86608] [-0.919032;  0.031278] 0.22594 

Newton 3 [5.2134; -3.6067] [563.17; −8; 3901 × 10−6] 726.70 

Newton 4 [3.4840; -2.7415] [166.41;  9.8662 × 10−4] 140.81 

Newton 5 [2.3375; -2.1688] [48.921; 1.9252 × 10−6] 26.153 

Newton 6 [1.5857; -1.7928] [14.156; 7.9298 × 10−6] 4.1081 

Newton 7 [1.1086; -1.5543] [3.8962;  −2.6482 × 10−7]  0.09475 

Newton 8 [0.83521; -1.4176] [0.91289; 2.2768 × 10−7] -0.52299 

Newton 9 [0.71923; -1.35961] [0.12858; 3.8630 × 10−7] -0.58096 

Newton 10 [0.69670; -1.34835] [0.0043342;  6.8773 × 10−8] -0.58244 

Newton 11 [0.69589; -1.34794]  [5.5268 × 10−6 ;  1.8097 × 10−9] -0.58245 

Newton 12 [0.69588; -1.34794]   [−5.5511 × 10−12 ;   5.5511 × 10−12] -0.58245 

It can be observed from the table that after twelve iterations, the solution converges to ]34794.1;69588.0[12 x . This 

solution is the same as the one obtained with a closer initial point ]25.1;75.0[0 x
 
using the Newton’s method. 

IV. Summary and Conclusion 

In this section, we present the summary and conclusion of the study. In the summary, the conceptualization of the procedure for 

correcting the failure in the convergence of the Newton’s method is provided.   

Summary 

Suppose that Hessian  )( kxH
 
is not positive definite. Then )()(1

kkk fs xxH  

 
is not a descent direction. By the 

factorization 
T

k LDLxH )( where L is a non-singular lower triangular matrix, if some elements of 

),,,(diag 21 pddd D
 
are negative, and if for the solution of ,k

T
avL 

 
where 



INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,  

MANAGEMENT & APPLIED SCIENCE (IJLTEMAS) 

ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue XI, November 2024 

www.ijltemas.in                                                                                                                                               Page 139 



 


otherwise,0

0if,1 k

k

d
a  

kkkk  xx 1  
 does not provide a positive definite Hessian 𝑯(𝑥𝑘+1), then )( kkkf  x  could provide a descent 

direction for the Newton’s method. 

Conclusion  

The study has examined a failure in the implementation of some of the procedures and algorithms that are used in unconstrained 

optimization techniques. These methods are examined in the light of known highly ill-conditioned functions. 

The study finds that a recommended modification to the Newton’s method, if the Hessian )( kxH is not positive definite, may 

not lead to the desired optimal solution particularly when the initial point is not close enough to the expected solution. It has 

therefore been demonstrated how to go round the problem. The results show that an optimal solution of a function should be 

confirmed by using multiple initial points that are not too close. 
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