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Abstract: The paper highlights a failure in the implementation of a recommendation for the modified Newton’s method using a Rosenbrock  type  of  functions  that  have  slow  convergence  with  two  minimum  points  as  test  functions.  The  study  finds  that  a recommended procedure, if the Hessian  H(x )  at a point is not positive definite, may not lead to the desired optimal solution k

particularly  when  the  initial  point  is not  close  enough  to  the  expected  solution. It has  been  demonstrated how  to  go  round  this problem. The results show that more than one technique may be required to determine all critical points of a given function.
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In  some  gradient-based  unconstrained  optimization  techniques  a  non-positive  definite  Hessian  matrix  of  the  problem  function possesses challenges for convergence of the solution. For the Newton’s method in particular, various modifications have  been suggested (e.g., Fiacco & McCormick, 1967; Marquardt, 1963) that incorporates the Steepest Descent (SD) method to obtain a new direction that probably will help to get to the minimum.

The  convergence  rate  of  an  optimization  problem  may  be  influenced  by  a  number  of  factors  that  includes  the  role  of  the underlying optimization method. Others involves the global or local nature of the convergence (Lewis & Nash, 2006). For studies on  convergence,  a  typical  test  function  of  the  type  of  the  Rosenbrock’s  function  (Emiola  &  Adem,  2021)  comes  handy  for studying robustness of gradient-based optimization algorithms.

In Section 2, we provide a description of the illustrative problem functions and review how the upper bound on the convergence rate,  expressed  as  a  function  of  the  level  of  ill-conditioning,  poses  a  challenge  for  the  optimization  process.  It  is  known  that obtaining  the  desired  critical  point  depends  on  the  initial  point.  We  demonstrate  in  this  paper  that  with  the  appropriate  search direction,  it  is  possible  to  reach  the  desired  optimal  point  even  with  a  (reasonably)  distant  starting  point  and  for  highly  ill-conditioned problem function for the Newton’s method. In Section 3, the Newton’s method as well as the Modified Newton’s method is presented. In the process, the problem of interest of the study is highlighted that points out the failure in convergence in spite of known recommendations in the literature and prescribes a remedy. Throughout the implementations, we set a tolerance of 5
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presented and followed by the conclusion.

II. Illustrative Functions and Effect of Ill-Conditioning on Convergence Two  main types  of  functions are  used  in  this  paper.  The  functions  are  selected  to  illustrate  the  effect  of  ill-conditioning  on the determination of optimal points.

Test Function I 

We consider the problem of minimizing the function
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(2.1)

The graph of 𝑓1(𝑥)  with almost flat base is given in Figure 1. The graph shows that locating a minimum of the function would pose a challenge.
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Figure 1: Graph of    f ( )
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The  results  show  that   f ( )

x   has  multiple  critical  points  which  may  be  difficult  to  detect  using  a  single  method.  The  paper 1

highlights the challenge in using the modified Newton’s method to arrive at the same point as obtained by the Conjugate Gradient method.

Test Function II 

We consider the problem of minimizing the Rosenbrock’s function given as 2 2
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using the steepest descent (SD) method. Table 1 gives some iterates in the application of the SD to the function using a starting point  x  [ ;

0

]

0 .

0

Table 1:  Number of iterations and condition number of the Hessian of  f 2( x) Iterate ( k)

𝐱 

κ(H)

0

[0; 0]

100.00

1

[0.15541; 0]

20.829

10

[0.31095; 0.08560]

60.578

100

[0.58593; 0.33975]

331.81

1000

[0.92741;  0.85909]

1653.2

From the table, there is slow rate of convergence of   f ( ) x which can be attributed to a large condition number,   (H).  Even 2

after 1000 iterations, the algorithm shows only slow convergence to the exact minimum

;

1

[

]

1 .  The graph of   f ( )
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 : 1

.

0 : 2,  2 : 1

.

0 : 2 )  is given in Figure 2.

 

Figure 2:  Graph  of the  Rosenbrock’s Function
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The rate of convergence of the function is explained by the long-valley base as shown in Figure 2. In spite of this, there is a single minimum point of the function.

The  observations  illustrate  a  major  weakness  of  the  SD  method  that  it  is  not  appropriate  when  the  Hessian  matrix  is  ill-conditioned. They also show that the determination of a minimum point of   f ( ) x  could be more daunting than that of   f ( ) x . It

1

2

will be seen in the next section that the implementation of the SD for  f ( ) x  converges after a few iterations rather to a point in 1

the neighbourhood of the initial point but not to the desired optimum point.

Linear Convergence for the Case of a Quadratic Function 

An  algorithm  exhibits  linear  convergence  in  the  objective  function  values  if  there  is  a  constant  𝛿 < 1    such  that  for  all   k sufficiently large, the iterates  x  satisfy the expression k
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where  x  is some optimal point of the problem. By this statement, the optimality gap shrinks by at least   δ  at each iteration and speeds  up  the  rate  of  convergence  if  𝛿  is  not  close  to  1.  Consider  the  case  in  which  the  objective  function  f (x)   is  a  simple quadratic function of the form
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Let  x denote the current point in the SD algorithm and let   d k

k   denote the current direction given by
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To obtain the next iterate of the SD algorithm, we compute the step size, 𝛼,  by considering 1

T

T

f (x  d ) 

(x  d ) A(x  d )  b (x  d ) k

k

k

k

k

k

k

k

2

 

1

T

2

T

  f (x ) d d   d Ad

k

k

k

k

k

2
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By the Kantorovich inequality, an upper bound on the value of  β  is given (Huang & Zhou, 2005) as 2
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Since by definition   ( )

1

H 

1



,  if the ratio is large, then the convergence constant 𝛿  will be close to (slightly smaller than) p

1, which slows down the convergence rate. Thus, a much smaller value than 1 of 𝛿  is desired.

Example 

Consider 𝑓2(𝑥)  in Equation (2.2). With a starting point of 𝒙0 = [0; 0] ,  the descent direction d   f (x )  [ ;

2

]

0 . Table 2 gives the sensitivity of SD convergence rate to the eigenvalue ratio.

0

Table 2:  Sensitivity of SD Convergence Rate to the Eigenvalue Ratio λ 1

λp 

Upper  Bound  on   δ 

k 

κ(H)

237.21622

7.97875

0.87407

2

29.731

279.17358

4.60848

0.93609

10

60.578

476.63669

1.43646

0.98800

100

331.81

744.95842

0.66666

0.99634

500

1117.4

889.92511

0.53830

0.99757

1000

1653.2

From  Table  2,   (H)   keeps  increasing  as  we  increase  the  number  of  iterations,  k.  It  also  shows  the  effect  of  the  relationship between 𝑘(𝑯) and the upper bound on 𝛿  on the convergence rate. We see that the convergence constant ranges from 0.87407 to 0.99757, implying that for functions of the type 𝑓2(𝒙) ,  the convergence rate of SD could be extremely slow.

III. Methods and Illustrative Problem 

Newton’s Method 

The multi-dimensional Newton’s method finds a stationary point of

 p

f :

  by solving the non-linear system of equations
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Where  H(x)  (also denoted by  ∇2𝑓(𝒙)) is the Hessian matrix, if we take x  to be   x ,  and since ∇𝑓(𝒙∗) is zero, we have 0
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at least for  x  near  x  .  Using Newton’s method to find the roots of  ∇𝑓(𝑥) = 0 ,  we arrive at the minimization method (assuming that   H( 

x )  is positive definite)
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We seek now to:
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1.  solve for the step    x
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k 1
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2.  compute   x  from   x
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The Illustrative Problem 

We consider the minimization problem
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. By repeated use of Equation (3.2), we obtain the results in Table 3.
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Table 3: Iterations for minimizing 𝑓1(𝒙)  using the Newton’s method k 

x k 

∇ f (x k)

0

[0.75; -1.25]

[0.43750;  0.25000]

1

[0.70; -1.35]

[2 .  2 × 10−2;  −5 .  5511 × 10−12]

2

[0.69591; -1.34796]

[1 .  3104 × 10−4;  −1 .  0 × 10−5]

3

[0.69588; -1.34794]

[−2 .  3294 × 10−5;  5 .  5511 × 10−12]

 81097
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4   is a minimum point of   f (x)  .  As noted in Section 2, the minimum point of this function 3

under Conjugate Gradient method is the same as 𝒙
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this paper.
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 (x )  in the Newton’s method fails to be a descent direction.

k

k

To ensure a descent direction, we make use of an alternative direction 𝒗𝑘  which is the eigenvector corresponding to the negative eigenvalue of the Hessian matrix at  x  in the SD method. That is, k
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Using  this  method,  we  compute  the  various  iterates  for  given  values  of  the  step  size  𝛼



𝑘  and

.  These iterations are given in

k

Table 4.

Table 4: Optimization of   f ( )

x for various step sizes under SD method

1

 

k 

 

 . 

x  

k

k

k

0

0.21571

[-0.92388;  0.38268]

[0; 0  0]

1

0.0051142

[ -0.89608;  0.44388]

[-0.199292;

0.082549]
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2

0.00024236

[-0.89451;  0.44704]

[-0.203875;

0.084819]

3

0.000040420

[-0.89444;  0.44719]

[-0.204092;

0.084927]

4

0.000040420

[-0.89443 ;  0.44722]

[-0.204128;

0.084945]

5

0.000040420

[-0.89443 ;  0.44722]

[-0.204128;

0.084945]

We see from Table 4 that the iterations converge after four iterations to the critical point [−0 .  204128; 0 .  084945] .  It is interesting to note that this minimum point is different from [0 .  69588; −1 .  34794] obtained under the Conjugate Gradient method after only one iteration, and under the Newton’s method after three iterations using the initial point [0 .  75; −1 .  25] . 

The  situation  encountered  so  far  is  that the  Hessian at a  point  is indefinite and therefore  could not  continue  with the Newton’s method. At this point, the steps taken to obtain a positive definite Hessian basically combines the Newton’s method with the  SD

method.  It  should  be noticed that  even though this  combined approach  (McMormick  &  Fiacco,  1967)  produces  a  solution,  this solution is not what is intended (see Table 3). To achieve the desired result, we first review the modified Newton’s method.

Modified Newton’s Method 

In the Newton’s method,
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is a descent direction if  H  (x )  is positive definite. The algorithm for damped Newton’s method is k
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When    H (x )  f

 (x ) is  not  a  descent  direction,  a  modified  Newton’s  method  substitutes  a  descent  direction  𝑠

k
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 (x )  From Equation (3.5), the modified Newton’s method becomes the SD method k
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(3.6)

1

by taking   H (x )  I  ,  the identity matrix.  In most cases, it is still possible to compute 𝑠

k

𝑘  from

Equation (3.4)  and to search along ±𝑠𝑘 ,  the sign chosen to ensure a descent direction.

A theoretical argument against the generalized Newton’s method is that if  H(x ) is not a positive definite matrix, a move in the k

direction  given  by  Equation  (3.5)  where    0    is  chosen to  minimize 𝑓  along    s   in  Equation  (3.4)  starting  from  𝑥

k

k

𝑘 ,  may

result in an increase rather than a decrease in 𝑓(𝑥) ,  yielding 𝛼𝑘 = 0 ,  which terminate the process at 𝑥𝑘 .  Another objection is that H(x )   may  not  have  an  inverse,  even  if  𝑓(𝑥)  is  convex.  The  modified  second-order  method  takes  into  account  these  two k

objections. The direction vector 𝑠𝑘  is generated according to two rules (McMormick & Fiacco, 1967). In both cases, x
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x

1

k

k k

where  𝛼𝑘  is  chosen  to  be  the  smallest  value  of  𝛼 ≥ 0  for  which  𝒙𝑘 + 𝛼𝑘𝑠𝑘  gives  a  local  minimum  of  𝑓(𝑥) .  The  rules  are  as follows:

1.  If  H(x )  has a negative eigenvalue, let 𝑠

k

𝑘  be a vector where

T

s H(x ) s  0

T

and    s  f (x )  0

k

k

k

k

k
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2.  If 𝐇(𝑥𝑘)  has all eigenvalues greater than or equal to zero, choose 𝒔𝑘  such that either 𝐇(𝑥 )

T

s  f x



𝑘 𝑠𝑘 = 0 ,  and

(

)

0

k

k

or

H(x ) s 

f

 (x )

 

 

 

 

 

 

k

k

k

(3.7)

 

The rationale for Rule 1 is that if the second partial derivative matrix has a negative eigenvalue there are certain directions along which  the  function  𝑓(𝑥)  decreases  and  along  which  the   rate   of  decrease  also  decreases.  Now,  to  obtain  𝑠𝑘 ,  we  use  the factorization

T

H(x )  LDL 

 

 

 

 

 

 

k
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where  L  is  a non-singular lower  triangular matrix  and  D  diag ( d ,  d ,,  d )  .  The  conditions  for  the  factorization are  as 1

2

p

follows:



1.

1

If D has all positive diagonal elements, solve for    s  H (x ) f (x ) .  . 

k

k

k

2.  If D has all non-negative diagonal elements, and at least one is zero, the vector 𝒔𝑘  is generated according to the second rule above.
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k
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otherwise
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 v, if v T f (x )  0
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k
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 v,

otherwise

Other forms of modification are to:

1.  Modify  the  Newton’s  search  direction  by  giving  it  a  bias  towards  the  steepest  descent  vector  −∇𝑓(𝒙 ) 𝑘     (Levenberg,

1944; Marquardt, 1963). This is achieved by adding a scalar multiple of the unit matrix to 𝐇(𝑥 ) 𝑘  and solving the system

 

 

(H(x )  I) s 

f

 (x )

k

k

k

to obtain v so that the matrix  H(x )  I  is positive definite.

k

 

2.  Modify the Hessian matrix in the form (Murray, 1972; Hebden, 1973) as H(x )  D

k

 

where D is diagonal and it is used to determine the search direction. The modification occurs as the matrix is being factorized.

The Illustrative Problem Continued 

For  𝑓

)

1(𝒙)  with  a  starting  point  of  𝒙𝟎 =   [0;  0] ,  it  has  already  been  found  that  𝑯(𝑥0   is  indefinite  and  that 1

s  H (x ) f (x ) is  not  a  descent  direction.  Therefore,  we  look  for  a  new  direction, v .  The  Newton’s  method  then k

k

k

 

becomes  x

 x  v .

k 1

k

k

k

To obtain v ,  we factorize the Hessian matrix H(x0) as in Equation (3.8) to obtain

2

0 

D  

 .

0  5

.

0 
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Now, because a diagonal entry is negative, we use the third condition to obtain  𝒂  =   [0; 1] ,  and hence 𝐯  =   [1; −0.5] which is the required descent direction. Using the SD algorithm to compute the first iterate, we obtain  x  [ 2

.

0 036 ;

3

1

.

0 018 ]

1   with

1

the Hessian

 4

.

0 9758

1



H(x ) 

 

1







1

9

.

1 9999

which  is  not  positive  definite.  The  process  therefore  cannot  continue.  Thus,  the  recommendation  of  Fiacco  and  McCormick (1967) seizes to work.

In order to overcome this problem, we need to search along a different direction which is in the same direction as v .  We observe that if we choose  x   f (x )  [ 2

.

0 365 ;

6  8

.

0 660 ]

8 , the Hessian given as

2

1

 6

.

0 7150 1

H(x ) 

 

2







1

2

is positive definite. We then switch back to the Newton’s method to continue with the process. Table 5 shows the iterations of the process.

Table 5: Optimization process for 𝑓1(𝒙) using Modified Newton’s method Method

k

𝒙

)

)

𝑘

∇𝑓(𝒙𝑘

𝑓(𝒙𝑘

 

0

[0; 0]

[0; 2]

1

Steepest

1

[-0.20363; 0.10181]

[0.068041;  2]

1.1950

Newton

2

[-0.23656; -0.86608]

[-0.919032;  0.031278]

0.22594

Newton

3

[5.2134; -3.6067]

[563 .  17; −8 ;  3901 × 10−6]

726.70

Newton

4

[3.4840; -2.7415]

[166 .  41;  9 .  8662 × 10−4]

140.81

Newton

5

[2.3375; -2.1688]

[48 .  921; 1 .  9252 × 10−6]

26.153

Newton

6

[1.5857; -1.7928]

[14 .  156; 7 .  9298 × 10−6]

4.1081

Newton

7

[1.1086; -1.5543]

[3 .  8962;  −2 .  6482 × 10−7]

0.09475

Newton

8

[0.83521; -1.4176]

[0 .  91289; 2 .  2768 × 10−7]

-0.52299

Newton

9

[0.71923; -1.35961]

[0 .  12858; 3 .  8630 × 10−7]

-0.58096

Newton

10

[0.69670; -1.34835]

[0 .  0043342;  6 .  8773 × 10−8]

-0.58244

Newton

11

[0.69589; -1.34794]

[5 .  5268 × 10−6 ;  1 .  8097 × 10−9]

-0.58245

Newton

12

[0.69588; -1.34794]

[−5 .  5511 × 10−12 ;   5 .  5511 × 10−12]

-0.58245

It  can  be  observed  from  the  table  that  after  twelve  iterations,  the  solution  converges  to  x

 6

.

0

[

958 ;

8  3

.

1 479 ]

4 .  This

12

solution is the same as the one obtained with a closer initial point  x 

;

75

.

0

[



]

25

.

1

using the Newton’s method.

0

 

IV. Summary and Conclusion 

In this section, we present the summary and conclusion of the study. In the summary, the conceptualization of the procedure for correcting the failure in the convergence of the Newton’s method is provided.

Summary 

1



Suppose  that  Hessian    H(x ) is  not  positive  definite.  Then   s  H (x ) f (x ) is  not  a  descent  direction.  By  the k

 

k

k

k

 

T

factorization

H(x )  LDL where  L  is  a  non-singular  lower  triangular  matrix,  if  some  elements  of k

D  diag ( d ,  d ,,  d )

T

are negative, and if for the solution of  L v  a , where 1

2

p

 

k
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 ,

1

if  d 

a 

0



k

 

k

 ,

0

otherwise

x



 

) ,  then

f

 (x   )   could  provide  a  descent

k 

x

1

k

k

k   does  not  provide  a  positive  definite  Hessian  𝑯(𝑥𝑘+1

k

k

k

direction for the Newton’s method.

Conclusion  

The study has examined a failure in the implementation of some of the procedures and algorithms that are used in unconstrained optimization techniques. These methods are examined in the light of known highly ill-conditioned functions.

The study finds that a recommended modification to the Newton’s method, if the Hessian  H(x ) is not positive definite, may k

not  lead  to  the  desired  optimal  solution  particularly  when  the  initial  point  is  not  close  enough  to  the  expected  solution.  It  has therefore  been  demonstrated  how  to  go  round  the  problem.  The  results  show  that  an  optimal  solution  of  a  function  should  be confirmed by using multiple initial points that are not too close.
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