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Abstract: Plant diseases pose significant threats to agriculture, adversely affecting both crop yield and quality. This study offers a comprehensive  overview  of  plant  pathology,  examining  various  types  of  diseases,  their  causative  agents,  and  the  intricate interactions between plants and pathogens. This study explored the integration of advanced deep learning and machine learning techniques. A dataset of plant leaf diseases, sourced from an online repository, was augmented with additional data featuring 11

West African plant species. The dataset underwent rigorous preprocessing to ensure compatibility with machine learning models.

This study employed the ResNet50 Convolutional Neural Network (CNN) for feature extraction and XGBoost for classification, achieving a remarkable accuracy of 98.81% in differentiating between healthy and diseased plant leaves. The performance of the developed  model  was  evaluated  using  key  metrics, including  accuracy,  precision, recall,  F1-score,  confusion  matrix,  and  ROC

curve,  and  was  found  to  outperform  existing models  in  terms  of  accuracy.  Furthermore, the  model  was  successfully  integrated into  a  mobile  application,  demonstrating  efficient  performance.  This  approach  presents  a  scalable  solution  for  precision agriculture, enhancing crop health management and boosting agricultural productivity. 

Keywords: Feature Extraction, XGBoost, ResNet50, hybrid, mobile application.


I. Introduction 

Food security is a pressing global issue, influenced by multiple factors including climate change [1], the decline in pollinators [2], and  plant  diseases  [3].  Among  these,  plant  diseases  pose  a  significant  threat  not  only  to  global  food  security  but  also  to  the livelihoods  of  smallholder  farmers,  who  are  particularly  vulnerable  to  disruptions  in  crop  health.  In  the  developing  world, smallholder  farmers  contribute  over  80%  of  agricultural  production  [4]  and  commonly  experience  yield  losses  exceeding  50%

due  to  pests  and  diseases  [5].  Moreover,  approximately  50%  of  the  world's  hungry  population  resides  in  smallholder  farming households  [6],  underscoring  their  vulnerability  to  pathogen-induced  food  supply  disruptions.  To  address  the  growing  food demands  of  a  projected  9.1  billion  people  by  2050,  agricultural  productivity  must  increase  by  up  to  70%  [7].  Plant  diseases significantly  impact  crop  yield  and  quality,  with  studies  indicating  that  they  can  reduce  yields  by  20–40%  [7].  These  diseases contribute  to  an  annual  global  loss  of  10–16%  in  crop  harvests,  costing  an  estimated  US$220  billion  [7].  Plant  diseases, characterized by physiological abnormalities, manifest in various symptoms including wilting, leaf spots, powdery mildew, galls, and  dryness.  Symptoms  such  as  wilting  result  from  a  loss  of  turgor  pressure,  while  spots  and  powdery  mildew  reflect  fungal infections.  Galls  represent  abnormal  growths  on  plant  parts,  and  dryness  may  signal  fungal  attacks.  Traditional  plant  disease management strategies heavily rely on chemical pesticides, with 78–79% of applications exceeding the necessary amount without considering plant needs or disease prevalence [7]. Excessive pesticide use can lead to the emergence of resistant pest species and contribute  to  the  shifting  timing  and  occurrence  of  diseases  due to  climate  change  [7].  Therefore,  systems  that precisely  detect disease  locations  and  target  pesticide  application  are  essential  to  minimize  unnecessary  chemical  use.  Historically,  disease detection was supported by agricultural extension services and local plant clinics. With increasing internet penetration and mobile phone  usage,  online  resources  and  mobile-based  tools  have  become  prominent  in  disease  diagnosis  [8].  Despite  these advancements, detection often relies on experienced plant pathologists, which is limited by the availability of specialists and the time-consuming nature of their diagnosis.

Current machine learning (ML) techniques for plant disease detection involve feature extraction and classification from images, focusing on attributes like color, texture, and shape. While these methods have been effective in detecting diseases such as leaf blotch, powdery mildew, and rust, they face limitations in identifying subtle symptoms and early-stage diseases and struggle with complex,  high-resolution  images  [9][10][11].  Recent  advances  in  deep  learning  (DL)  techniques,  such  as  convolutional  neural networks  (CNNs)  and  deep  belief  networks  (DBNs),  have  shown  promise  for  plant  disease  detection  [12][13].  These  methods learn the underlying features of images to detect subtle disease symptoms that traditional methods might miss [14][15][16]. DL

models excel with complex and high-resolution images but require large labeled datasets and significant computational resources, which can be a limitation [17]. Despite the potential of ML and DL approaches, most research has focused on specific diseases or plant  species,  and  there  is  a  need  for  more  publicly  available  datasets  for  model  training  and  evaluation.  The  development  of generalizable  and  robust  models  for  diverse  plant  species  and  diseases  is  essential.  Until  recently,  comprehensive  datasets  of diseased and healthy plant images were scarce, highlighting the need for more accessible and extensive datasets to improve plant www.ijltemas.in                                                                                                                                                                         Page 66
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disease management. This study aims to address this gap by developing a plant disease detection system using a hybrid machine learning approach, thereby creating an efficient system for accurate plant disease detection. The dataset used for training will be enhanced  by  incorporating  additional  data  from  11  indigenous  West  African  plants,  broadening  the  model's  applicability  and improving its effectiveness.


II. Literature Review 

[18] developed a hybrid model combining CNN with a recurrent neural network (RNN) for plant disease detection. Their work involved preprocessing images to enhance features, followed by feature extraction using CNNs and temporal pattern recognition with  RNNs. This  approach achieved  an  accuracy  of  93%  in  detecting  diseases  such as  powdery  mildew  and rust.  The  primary limitation noted was the computational expense associated with training the hybrid model, making it less accessible for resource-constrained environments. [19] utilized a deep belief network (DBN) for plant disease detection. Their methodology  focused on training  the  DBN  to  learn  hierarchical  features  from  leaf  images,  which  were  then  used  for  classification.  The  DBN  model achieved an accuracy of 89% in detecting diseases like leaf spot and downy mildew. A key limitation was the need for extensive labeled data for training the DBN, which may not be available for all plant types. [20] employed a support vector machine (SVM) combined  with  texture  and  color  features  for  plant  disease  detection.  Their  methodology  involved  extracting  texture  and  color features from leaf images and training an SVM classifier. The study showed that the SVM model  could effectively differentiate between  healthy  and  diseased  plants,  achieving  an  accuracy  of  90%.  However,  the  study  faced  limitations  in  handling  high-resolution  images  and  subtle  disease  symptoms.  [21]  explored  the  use  of  an  ensemble  learning  approach  for  plant  disease classification. They combined multiple machine learning models, including decision trees, random forests, and gradient boosting, to improve classification performance. The ensemble approach achieved an accuracy of 91% in detecting diseases like blight and leaf curl. Nonetheless, the study highlighted the challenge of managing computational resources and integrating multiple models efficiently. [22] proposed a novel approach using a combination of CNN and transfer learning for plant disease  detection. They utilized pre-trained CNN models and fine-tuned them on a dataset of plant leaf images. This method achieved an accuracy of 94%

and reduced the need for extensive labeled data. However, the study noted that transfer learning might not be as effective for very specific or rare plant diseases.

[23]  utilized  a  CNN  with  attention  mechanisms  to  enhance  the  detection  of  plant  diseases.  Their  methodology  involved incorporating attention layers into the CNN to focus on relevant features in leaf images, improving detection accuracy. The model performed  well  on  a  variety  of  plant  diseases,  achieving  an  accuracy  of  92%,  but  faced  limitations  in  terms  of  computational complexity and the need for a substantial amount of training data. [24] employed a hybrid model combining CNN with a decision tree  classifier  for  plant  disease  detection.  Their  approach  involved  using  CNN  for  feature  extraction  and  a  decision  tree  for classification. This model showed improved performance in detecting diseases such as leaf rust and blight, with an accuracy of 91%  compared  to  traditional  methods.  The  limitation  of  this  study  was  the  increased  complexity  of  combining  two  different models,  which required  careful  tuning and  validation.  [25] developed  a  deep  learning-based  system  for  plant  disease  detection using CNNs. Their work involved training a CNN model on a large dataset of plant leaf images to classify diseases. The results showed high accuracy rates of 95%, but the study acknowledged limitations in the need for large-scale annotated datasets and the computational cost of training deep learning models. [26] proposed an approach using a CNN combined with data augmentation techniques for plant disease detection. Their methodology involved training a CNN model on augmented leaf images to enhance model  robustness.  They  achieved  high  accuracy  of  96%  in  detecting  diseases  such  as  tomato  early  blight  and  late  blight.

However,  the  study  faced  challenges  with  the  computational  resources  required  for  extensive  data  augmentation  and  model training.  [27]  utilized  a  combination  of  CNNs and  transfer learning  to  detect  plant diseases  from  images.  They  applied  transfer learning  with  pre-trained  CNN  models,  such  as  VGG16  and  ResNet,  and  fine-tuned  them  on a  specific  dataset  of  plant leaves.

Their results indicated improved accuracy of 92% in detecting various plant diseases, but the study highlighted limitations in the need for large amounts of labeled data and the computational cost of fine-tuning. [28] developed a deep learning framework that integrated  CNNs  with  feature  fusion  techniques  for  plant  disease  detection.  Their  approach  involved  fusing  features  extracted from multiple layers of CNNs to improve disease classification accuracy. The model showed high performance with an accuracy of  93%  in  identifying  diseases  like  leaf  spot  and  blight.  A limitation noted  was  the  increased  complexity  in  feature  fusion and model interpretation.

[29] proposed a novel approach combining CNNs with a long short-term memory (LSTM) network for plant disease detection.

Their methodology involved using CNNs for feature extraction and LSTMs for sequence modeling to improve disease detection over time. The results demonstrated improved accuracy of 94% in detecting plant diseases, but the study encountered limitations related  to  the need  for  sequential  data  and  increased  model  complexity.  [30]  explored  the  use  of  machine  learning techniques, including SVM and k-nearest neighbors (KNN), for detecting plant diseases from image data. They compared the performance of these  algorithms  in  classifying  plant  diseases  and  found  that  SVM  achieved  higher  accuracy  of  89%  compared  to  KNN.  The study's  limitations included difficulty  in handling high-dimensional  data and  the need  for  feature  engineering.  [31]  employed  a deep  learning  approach  using  a hybrid  CNN and  attention mechanism  for  plant  disease  detection. Their  methodology  involved integrating  attention  mechanisms  into  CNNs  to  focus  on  important  features  in  leaf  images,  enhancing  disease  classification accuracy. The study achieved promising results with an accuracy of 92% but faced challenges with the increased computational demands and the need for a large annotated dataset. [32] investigated the use of ensemble learning techniques for plant disease detection. They combined various machine learning models, including random forests, gradient boosting, and neural networks, to www.ijltemas.in                                                                                                                                                                         Page 67

[image: Image 3]

INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,   MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)

ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue V, May 2024

improve  classification  performance.  The  ensemble  approach  demonstrated  high  accuracy  of  93%  in  detecting  multiple  plant diseases, but the study highlighted challenges related to model integration and computational resources.


III. Material and Methods 

This section outlines the materials and methods used to develop a system for detecting plant diseases, as illustrated in Figure 1.

The  process  begins  with  the  collection  of  datasets  containing  images  of  plant  leaves  showing  various  symptoms  of  different diseases.  The  collected  data  then  undergoes  preprocessing  procedures  aimed  at  ensuring  data  quality  and  enhancing  the effectiveness  of  the  training  process.  This  preprocessing  involves  resizing  images, normalizing  pixel  values, and applying  data augmentation  techniques.  A  transfer  learning  algorithm,  specifically  ResNet50,  is  applied  to  the  preprocessed  data  to  extract features  from  the  images.  ResNet50  is  used  due  to  its  ability  to  leverage  pre-trained  weights  and  efficiently  capture  complex image  features.  Following  feature  extraction,  a  gradient  boosting  machine,  the  XGBoost  model,  is  trained  using  the  extracted features. This model generates the plant disease detection system. The effectiveness of the XGBoost model is assessed through various performance metrics to evaluate its accuracy and robustness. The trained model is then integrated into a mobile app.  The entire  implementation  process  is  carried  out  using the machine  learning toolbox  available  within the  Python  environment,  with additional support from libraries such as Pandas, NumPy, and Scikit-learn (sklearn). The app is developed using Android Studio and Flutter to provide a user-friendly interface for plant disease detection. To validate the methodology, a comparative analysis is performed, comparing the performance of the developed model with other approaches to ensure its efficacy and reliability.


Data Collection 

The  dataset  utilized  in  this  study  was  sourced  from  Roboflow,  an  online  repository.  It  consists  of  a  total  of  52,446  images  of diseased and non-diseased plant leaves, which are divided into training, testing, and validation sets. The images are organized into 38 distinct classes representing 14 different plant species.

To  augment  the  dataset,  an  additional  set  of  images  featuring  11  indigenous  West  African  plants,  captured  with  smartphone cameras, was incorporated. This augmentation expanded the dataset to include 25 plant species, resulting in a total of 64 different classes. The updated dataset now contains 61,459 images, which are divided into 43,021 training images, 9,218 testing images, and 9,218 validation images. Table 1 provides a detailed list of the classes included in the updated dataset.

Table 1. List of classes in the Updated dataset.

S/N  Plant 


Classes 

1


Aloe Vera

Aloe Vera Healthy, Aloe Vera Leaf Rot, Aloe Vera Leaf Rust

2

Apple

Apple Healthy, Apple Black Rot, Apple Cedar Rust, Apple Cloudy Spot, Apple Scab, Apple Worm 3

Blueberry

Blueberry Healthy, Blueberry Mummy Berry

4

Banana

Banana Healthy, Banana Bacterial Wilt, Banana Black Sigatoka 5

Cherry

Cherry Healthy, Cherry Bacterial Canker, Cherry Powdery Mildew, Cherry Shot Hole 6

Corn

Corn Healthy, Corn Common Rust, Corn Northern Leaf Blight, Corn Southern Leaf Blight, Corn Stewart's Wilt

7

Coffee

Coffee Healthy, Coffee Cercospora Leaf Spot, Coffee Leaf Rust, Coffee Red Spider Mite 8

Grape

Grape  Healthy,  Grape  Black  Rot,  Grape  Esca,  Grape  Leaf  Blight,  Grape  Leaf  Spot,  Grape  Powdery Mildew, Grape Red Blotch

9

Peach

Peach Healthy, Peach Bacterial Spot, Peach Brown Rot, Peach Leaf Curl, Peach Powdery Mildew, Peach Rust

10

Pepper

Pepper Healthy, Pepper Bacterial Spot, Pepper Phytophthora Blight, Pepper Leaf Curl Virus 11

Potato

Potato Healthy, Potato Early Blight, Potato Late Blight, Potato Leaf Roll Virus, Potato Black Leg 12

Strawberry

Strawberry Healthy, Strawberry Leaf Spot, Strawberry Powdery Mildew, Strawberry Root Rot 13

Healthy

Healthy Leaf Blight, Healthy Red Leaf Spot, Healthy Red Scab Leaf

14

Tomato

Tomato  Healthy,  Tomato  Bacterial  Spot,  Tomato  Early  Blight,  Tomato  Late  Blight,  Tomato  Leaf  Mold, Tomato Septoria Leaf Spot, Tomato Spider Mites, Tomato Yellow Leaf Curl Virus 15

Wheat

Wheat Healthy, Wheat Leaf Rust

16

Cassava

Cassava Healthy, Cassava Mosaic Disease, Cassava Brown Streak Disease www.ijltemas.in                                                                                                                                                                         Page 68

[image: Image 4]

[image: Image 5]

INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,   MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)

ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue V, May 2024

17

Yam

Yam Healthy, Yam Anthracnose, Yam Leaf Spot

18

Maize

Maize Healthy, Maize Leaf Blight, Maize Streak Virus

19

Cowpea

Cowpea Healthy, Cowpea Mosaic Virus, Cowpea Aphid-Borne Mosaic Virus 20

Groundnut

Groundnut Healthy, Groundnut Leaf Spot, Groundnut Web Blight 21

Okra

Okra Healthy, Okra Yellow Vein Mosaic Virus, Okra Anthracnose 22

Plantain

Plantain Healthy, Plantain Sigatoka Disease

23

Oil Palm

Oil Palm Healthy, Oil Palm Bunch Rot, Oil Palm Yellowing

24

Sorghum

Sorghum Healthy, Sorghum Ergot, Sorghum Rust

25

Taro

Taro Healthy, Taro Leaf Blight, Taro Colocasia Virus


Data Preprocessing 

To  prepare  the  dataset  for  training,  several  preprocessing  steps  are  undertaken  to  ensure  consistency  and  improve  model performance. All images are resized to a standard size of 224x224 pixels to ensure uniformity across the dataset. After resizing, pixel values are scaled to a range between 0 and 1 by dividing them by 255, as pixel values are typically in the range of 0 to 255.

This scaling helps normalize the data and speeds up model convergence. Additionally, data augmentation techniques are applied to  enhance  the  training  dataset.  These  techniques  generate  new  variations  of  images  through  transformations  such  as  rotation, flipping,  scaling,  and  cropping,  thereby  increasing  the  variety  of  the  dataset  and  improving  the  model's  robustness  and generalization capabilities.


Feature Extraction using Resnet50 

ResNet50 is a deep convolutional neural network designed for image classification, renowned for its use of residual connections to facilitate training of very deep networks. It consists of 50 layers, including convolutional layers, residual blocks, and  pooling layers.

In the feature extraction process, each plant leaf image is first resized and normalized before being fed into ResNet50. The image then undergoes a forward pass through the network, which includes 48 convolutional layers and 2 fully connected layers. As the image progresses through these layers, the convolutional layers and residual blocks extract hierarchical features from the image, capturing various levels of detail and patterns. The final output from the convolutional layers, just before the classification layer, is  used  as  the  feature  vector.  This  vector  represents  the  high-level  features  of  the  plant  leaf  image,  providing  a  compact representation of its visual content that can be used for further analysis or classification tasks.

 

Fig. 1. Architecture of ResNet50


Training of the XGBoost Model 

After  processing  all  plant  disease  images  through  ResNet50,  a  collection  of  feature  vectors  was  obtained,  each  representing  a specific plant leaf image. These feature vectors summarize the visual content of the images, capturing essential information about whether a leaf is diseased or healthy. The next step is to divide the feature dataset into training and testing sets. The training set, which  consists  of  feature  vectors  and  their  corresponding  labels  (diseased  or  healthy),  is  used  to  train  the  XGBoost  model.

XGBoost is a powerful machine learning algorithm renowned for its efficiency and predictive performance. It builds an ensemble of  decision  trees  through  boosting,  a  process  where  trees  are  added  sequentially  to  correct  errors  made  by  previous  trees.  The XGBoost algorithm learns to identify patterns and relationships between the features and the labels by iteratively constructing and refining decision trees to minimize classification errors. It adjusts its parameters based on the  training data to enhance accuracy.

Once the XGBoost model is trained using the feature vectors from the training set, its performance is evaluated with the testing www.ijltemas.in                                                                                                                                                                         Page 69
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set. This set, which also contains feature vectors and their true labels, is used to assess  how well the model generalizes to new, unseen plant leaf images.

 

Fig. 2. Architecture of XGBoost


IV. Results 

After  applying  the  ResNet-50  architecture  for  feature  extraction  and  using  these  features  to  train  the  XGBoost  algorithm,  the model's performance was rigorously evaluated using several metrics, including accuracy, precision, recall, specificity, F1-score, confusion matrix, and ROC curve, as summarized in Table 2. Accuracy represents the proportion of correct predictions out of all predictions  made  by  the  model.  Precision  measures  the  ratio  of  true  positive  leaf  disease  detections  to  the  total  number  of instances predicted as diseased, reflecting the quality of positive predictions. Recall assesses the model's ability to detect actual cases of leaf disease. The F1-score provides a balanced measure by taking both precision and recall into account, serving as the harmonic mean of these two metrics.

Fig. 3 and 4 illustrate the model’s performance, with Fig. 3 depicting the training and validation accuracy, and Fig. 4 showing the training and validation loss.

Table 2. Training Reports of the models

Algorithm 

Accurac

Precision 


Recall 

F1-score 



y 

XGBoost


98.81%

0.98

1.0

0.99

 

Fig. 3. Training and Validation Accuracy

 

Fig. 4. Training and Validation Loss
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Fig.  5  shows  the  Confusion  Matrix  of  the  model,  providing  a  detailed  table  that  provides  insights  into  the  true  positives,  true negatives,  false  positives,  and  false  negatives.  Fig.  6  depicts  ROC  curve  which  plots  the  true  positive  rate  against  the  false positive rate at various threshold settings.

 

Fig. 5. Confusion matrix of the XGBoost

 

Fig. 6. ROC of the XGBoost

Table 3. Comparative analysis of results with other techniques Authors

Technique

Accuracy

[18]

Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) 93%

[19]

Deep Belief Network (DBN)

89%

[21]

Decision Trees, Random Forest, and Gradient Boosting

91%

[22]

Convolutional Neural Networks (CNN) and Transfer Learning

94%

[27]

Convolutional Neural Networks (CNN), VGG16 and ResNet

92%

[29]

CNN and Long Short Term Memory (LSTM)

94%

New model

ResNet50 and XGBoost

98.8%

The  Table  3  compared  the  performance  of  the  existing  techniques  with  the  new  model  for  plant  disease  detection.  In  the comparative assessment, the new model for plant disease detection was compared with other pre-existing models. The outcomes indicated that newly developed model attained a superior detection accuracy.


System Implementation 

The  system  implementation  involved  using  Python  and  Flutter.  After  training  and  evaluating  the  model,  it  was  exported  to TensorFlow Lite (TFLite), which is optimized for mobile deployment. The mobile user interface was developed using Flutter, and the  TFLite  model  was  integrated  into  the  app.  The  mobile  app  is  designed  to  capture  images  of  plant  leaves  and  display  the results, including the name of the detected disease and any relevant suggestions.
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Fig. 7. Upload image and Take photo Screen

Fig. 7 displays the mobile app screen, where users can either upload images of plant leaves directly from the gallery or take new photos  for  disease  detection.  Fig  8  illustrates  a  prompt  asking  whether  the  uploaded  image  should  be  saved.  After  the  image upload, the integrated model processes the image to detect plant diseases, as shown in Figure 9.
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Fig. 8. Screen displays whether you want to save the image or not

 

Fig. 9. Screen showing diseases name, possible causes and solutions V. Discussion 

The study effectively demonstrates the integration of machine learning (ML) techniques, particularly CNN and XGBoost, in the detection and classification of plant diseases. The adoption of ResNet50 for feature extraction significantly enhances the model's ability  to  capture  complex  patterns  within  the  image  data,  which  is  crucial  for  accurately  identifying  disease  symptoms.  The model achieved an impressive accuracy of 98.81%, indicating a high level of precision and recall in identifying diseased versus healthy  plant  leaves.  Comparing  the  developed  model  with  existing  models  indicated  that  the  model  attained  a  high  accuracy.

However,  this  study  distinguishes  itself  by  successfully  integrating  ResNet50  with  XGBoost,  which  not  only  improves  the model's performance but also optimizes it for mobile deployment via TensorFlow Lite. The model was effectively integrated into a mobile system, demonstrating its practical application in real-world scenarios.


VI. Conclusion 

This  study  presents  a  hybrid  approach  to  plant  disease  detection  using  advanced  ML  techniques,  particularly  ResNet50  and XGBoost.  The  high  accuracy  and  precision  achieved  demonstrate  the  potential  of  these  techniques  in  improving  agricultural productivity  by  enabling  early  and  accurate  detection  of  plant  diseases.  The  successful  deployment  of  the  model  on  a  mobile platform further underscores its practicality  for real-world applications, especially in regions where traditional disease detection methods are not readily available.


Recommendation 

Future research should aim to broaden the dataset by including a greater diversity of plant species and diseases, particularly those from  under-represented  regions  like  Africa  and  Southeast  Asia.  To  improve  practical  applications,  integrating  the  model  with Internet  of  Things  (IoT)  devices,  such  as  smart  cameras  and  sensors,  could  enable  real-time  monitoring  and  disease  detection.

This  would  help  farmers  receive  timely  information  to  reduce  crop  losses.  Additionally,  providing  training  and  educational resources for end-users, especially smallholder farmers, is essential to ensure effective use of the technology.
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