INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue XII, December 2024
www.ijltemas.in Page 170
40. Elemuren, R., Evitts, R., Oguocha, I.N.A. et al. Synergistic Erosion-Corrosion Behavior of AISI 2205 Duplex Stainless
Steel Elbows in Potash Brine-Sand Slurry and the Associated Microstructural Changes. Journal of Material Engineering
and Performance, 29, 7456–7467 (2020). https://doi.org/10.1007/s11665-020-05195-w
41. Zheng, X. and Liu, Y. Slurry erosion–corrosion wear behavior in SiC-containing NaOH solutions of Mo2NiB2 cermets
prepared by reactive sintering, International Journal of Refractory Metals and Hard Materials, Volume 78, 2019, 193-
200, https://doi.org/10.1016/j.ijrmhm.2018.09.017.
42. Naz, M.Y., Sulaiman, S.A., Shukrullah, S., Ghaffar, A., Ibrahim, K.A., and AbdEl-Salam, N.M. (2017). Development of
erosion-corrosion mechanisms for the study of steel surface behavior in a sand slurry, Measurement, 106(27), 203-210.
43. Peat, T., Galloway, A.M., Toumpis, A.I. and Harvey, D. Evaluation of the synergistic erosion-
corrosion behavior of HVOF thermal spray coatings, Surface and Coatings Technology, Volume 299,
2016, 37-48, https://doi.org/10.1016/j.surfcoat.2016.04.072.
44. Espinoza-Jara, A., Walczak, M., Molina, V. N. A., Jahn, W. and Brevis, W. (2022). Erosion under turbulent flow: a
CFD-based simulation of near-wall turbulent impacts with experimental validation, Engineering Applications of
Computational Fluid Mechanics. 16, 1526-1545, DOI 10.1080/19942060.2022.2099978.
45. Waldi, M., Leksana, A. M. A., Samudra, H.B., Prajitno, D.H., Syuryana, E.P. and Tjahaya, H. (2023). Erosion-corrosion
Simulation of Thermally Sprayed WC-based Cermet in Artificial Seawater and Dam Water Environments, Engineering
Journal, 27(11), 1-14, DOI:10.4186/ej.2023.27.11.1
46. Zhang, Q., Jiang, W., Wang, Z., Wang, L, Huang, Y. and Xu, Y. (2023). Evaluation of Corrosion and Erosion-Corrosion
Behavior of X65 Pipeline Steel in Flowing CO
2
-Saturated Electrolyte, Corrosion, 79 (6), 587–604.
47. Liang, L., Pang, Y., Tang, Y., Zhang, H., Liu, H. and Li, Y. (2019). Combined wear of slurry erosion, cavitation erosion,
and corrosion on the simulated ship surface, Advances in Mechanical Engineering, 11(3), 1–14, Doi:
10.1177/1687814019834450
48. Shiva Suthan Rajahram (2010). Erosion-Corrosion Mechanisms of UNS S31603 Stainless Steel. Ph.D. Thesis, Faculty of
Engineering, Science and Mathematics, University of Southampton, England, November 2010.
49. Sharma, A., Perumal, G., Arora, H. and Grewal, H. (2021). Slurry Erosion–Corrosion Resistance of MoNbTaTiZr High
Entropy Alloy, Journal of Bio- and Tribo-Corrosion, 7(3), DOI: 10.1007/s40735-021-00530-7.
50. Guma, T.N. and Ishaya, D.D. (2024). Evaluation of Water Jet Impingement Erosion-Corrosion of Mild Steel under
Experimental Operating Conditions, Academy Journal of Science and Engineering, 18(2), 101-124.
51. Zhao, Y., Zhou, F., Yao, J., Dong, S. and Li, N. (2015). Erosion–corrosion behavior and corrosion resistance of AISI
316 stainless steel in flow jet impingement, Wear, Vols. 328–329, 464-474, https://doi.org/10.1016/j.wear.2015.03.017.
52. Liu, J., BaKeDaShi, W., Li, Z., Xu, Y., Ji, W., Zhang, C., Cui, G. and Zhang, R.Y. (2017). Effect of flow velocity on
erosion–corrosion of 90-degree horizontal elbow, Wear, Vols. 376–377, Part A, 516-525,
https://doi.org/10.1016/j.wear.2016.11.015.
53. Wang, W., Hu, J. Yuan, X., Zhou, L., Yu, J., Zhang, Z. and Zhong, X. (2022). Understanding the effect of tensile stress
on erosion-corrosion of X70 pipeline steel, Construction and Building Materials, Vol. 342, Part B, 127972,
https://doi.org/10.1016/j.conbuildmat.2022.127972.
54. Brownlie, F., Hodgkiess, T., Pearson, A. and Galloway. A.M. (2021). A study on the erosion-corrosion behavior of
engineering materials used in the geothermal industry, Wear, Vol. 477, 203821,
https://doi.org/10.1016/j.wear.2021.203821.
55. Owen, J., Ramsey, C., Barker, R. and Neville, A. (2018). Erosion-corrosion interactions of X65 carbon steel in aqueous
CO2 environments, Wear, Vols. 414–415, pp. 376-389, https://doi.org/10.1016/j.wear.2018.09.004.
56. Kim, Y.J., Kim, S.W., -Kim, H.B., Park, C.N., Choi, Y. and Park, C.J. (2019). Effects of the precipitation of secondary
phases on the erosion-corrosion of 25% Cr duplex stainless steel, Corrosion Science, Vol.152, pp. 202-210,
https://doi.org/10.1016/j.corsci.2019.03.006.
57. Yi, J.Z., Hu, H. X., Wang, Z.B. and Zheng, Y.G. (2018). Comparison of critical flow velocity for erosion-corrosion of
six stainless steels in 3.5 wt.% NaCl solution containing 2 wt.% silica sand particles, Wear, Vols. 416-417, pp. 62-71,
https://doi.org/10.1016/j.wear.2018.10.006.
58. Owen, J., Ducker, E., Huggan, M., Ramsey, C., Neville, A. and Barker, R. (2019). Design of an elbow for integrated
gravimetric, electrochemical and acoustic emission measurements in erosion-corrosion pipe flow environments, Wear,
Vols. 428-429, pp. 76-84, https://doi.org/10.1016/j.wear.2019.03.010.
59. Kuruvila, R., Thirumalai Kumaran, S., Khan, M. & Uthayakumar, M. (2018). A brief review on the erosion-corrosion
behavior of engineering materials. Corrosion Reviews, 36(5), 435-447. https://doi.org/10.1515/corrrev-2018-0022
60. Aribo, S., Fakorede, A., Ige, O. and Olubambi, P. (2017). Erosion-corrosion behavior of aluminum alloy 6063 hybrid
composite, Wear, Vols. 376–377, Part A, pp. 608-614, https://doi.org/10.1016/j.wear.2017.01.034
61. Karafyllias, G., Galloway, A. and Humphries, E. (2021). Erosion-corrosion assessment in strong acidic conditions for a
white cast iron and UNS S31600 stainless steel, Wear, Vols. 484-485, 203665,
https://doi.org/10.1016/j.wear.2021.203665.
62. Zhao, W., Wang, C., Zhang, T., Yang, M., Han, B., Neville, A. (2016). Effects of laser surface melting on erosion–
corrosion of X65 steel in liquid–solid jet impingement conditions, Wear, Vols. 362-363, 39-52,
https://doi.org/10.1016/j.wear.2016.05.006.