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Abstract: The research aims to establish a robust autonomous navigation system for differential drive mobile robots, leveraging 

URDF modeling, SLAM techniques, AMCL, Gazebo simulation, and RViz2 visualization. The central objective is to enable 
robots to autonomously perceive their surroundings, construct accurate maps, self-localize, and navigate. The integration of 

URDF defines robot attributes, SLAM produces precise maps, and AMCL ensures reliable localization. Gazebo facilitates testing, 

while RViz2 provides real-time visualization. The outcome is an efficient navigation system empowering robots to independently 

navigate intricate environments. Beyond warehousing, applications span service robotics, exploration, and environmental 

monitoring. The research's significance lies in addressing a fundamental robotics challenge, advancing autonomous mobility 

across sectors. The approach's efficacy is validated through testing, with potential contributions to robotics research and r eal- 

world applications. achieved 97% mapping accuracy with a 5% deviation in simulated environments. 
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I. Introduction 

Autonomous Mobile Robots (AMRs) have truly revolutionized automation, opening up exciting new possibilities across various 

industries. These remarkable robots, armed with sensors, actuators, and advanced control algorithms, possess the remarkable 

ability to independently explore their environments, plan the most efficient routes, and seamlessly carry out tasks. Their 

applications span a wide spectrum, including manufacturing, healthcare, agriculture, military operations, retail, and exploration, 

revolutionizing the way tasks are performed and data is acquired. 
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Figure 1: Mobile Robot. Source Katte 2018 

This project focuses on a specific facet of autonomous robotics: the development of navigation systems for differential drive 

mobile robots. These robots, known for their maneuverability and versatility, hold promise in domains like logistics, surveillance, 

and exploration. To harness their full potential, integration of key technologies becomes paramount. 

Problem Statement 

A critical challenge lies in creating reliable autonomous navigation systems for differential drive mobile robots. Existing 

approaches do not fully integrate ROS2, FastSLAM, and AMCL to enhance localization, mapping accuracy, and navigation 

efficiency. Without a cohesive solution, robots risk errors, inefficient path planning, and collisions, impeding their ability to 

function optimally in complex and dynamic environments. This shortcoming is particularly impactful given the rising demand for 

automation across industries. 

The significance of addressing this problem cannot be overstated. Failure to provide a comprehensive solution inhibits the 

realization of efficient and safe autonomous navigation, limiting the potential of these robots in diverse applications. The 

consequences extend to compromised operational efficiency, increased costs, and missed opportunities for innovative 

applications. 
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Aims and Objectives 

This research project is dedicated to bridging the current gap in autonomous navigation for differential drive mobile robots. The 

primary objective is to demonstrate the effectiveness of integrating Grid-Based FastSLAM with AMCL within the ROS2 

framework, alongside URDF-based modeling. This integration is intended to empower robots with the capability to precisely 

perceive their surroundings, construct detailed maps, continuously self-localize, navigate autonomously, and adeptly avoid 

obstacles. 

The research objectives are outlined as follows: 

Identify areas within the implemented system that may necessitate further research and refinement to enhance the functionality 

and effectiveness of the autonomous navigation system for differential drive mobile robots. 

Conduct a comprehensive literature review to identify a suitable SLAM algorithm and localization method for the development of 

an autonomous navigation system for differential drive mobile robots, focusing on the integration of Grid-Based FastSLAM, 

AMCL, and URDF within ROS2. 

Implement the chosen Grid-Based FastSLAM algorithm and AMCL method within the ROS2 framework and the Gazebo 

simulator as part of the autonomous navigation system's development. 

Evaluate the performance of the integrated Grid-Based FastSLAM and AMCL system in diverse simulated and visualization 

environments. Particular attention will be given to key metrics, including localization accuracy, map quality, computational 

efficiency, and obstacle avoidance capabilities derived from command velocities. 

The successful completion of these objectives will establish an innovative and dependable navigation system, leveraging Grid- 

Based FastSL AM and AMCL integration. This system is poised to elevate the capabilities of differential drive mobile robots, 

offering practical applications and benefits across various industries and sectors. 

II. Literature Review 

Introduction: 

In recent years, the field of autonomous robotics has experienced remarkable advancements, revolutionizing various industries 

through breakthroughs in navigation, obstacle avoidance, simultaneous localization, and mapping (SLAM), and map generation 

techniques. These advancements have empowered robots to operate independently in complex and dynamic environments, with 
applications spanning forestry, healthcare, agriculture, construction, and general robotics. This literature review aims to explore 

the key studies and research conducted in these domains, with a specific focus on the progress made in autonomous navigation 

and the development of comprehensive navigation systems for mobile robots. 

Within the field of autonomous navigation, a multitude of studies have significantly contributed to its advancement. This review 

will delve into the exploration of innovative sensor technologies employed to accurately perceive the environment. These sensors, 

which encompass lidar, cameras, and inertial measurement units (IMUs), serve as critical sources of information for robots, 

enabling them to develop a holistic comprehension of their surroundings and make well-informed choices as they navigate. 

Moreover, in this review, we'll delve into the progression of SLAM algorithms, which have played a central role in empowering 

robots to construct intricate maps of their environment while precisely determining their own location within these maps. 

Through this review, it is anticipated that new contributions will be made to the field of autonomous robotics, driving further 

advancements in mobile robot navigation, and setting the stage for future developments. 

Mapping: 

In recent years, the field of mapping in robotics has witnessed significant advancements and comprehensive studies aimed at 

enhancing mapping capabilities have emerged. (Achour et al., 2022) conducted a comprehensive survey focusing on semantic 

mapping in the context of both single mobile robots in indoor environments and collaborative mobile semantic mapping. Their 

survey encompassed a review of contemporary solutions for acquiring semantic data, including techniques such as object 

detection/recognition, deep-learning-based segmentation, and innovative human-robot interaction approaches. Additionally, the 

authors delved into reasoning-based acquisition methods, emphasizing the capability of robots to infer new information based on 

acquired data and a knowledge database. While highlighting the substantial progress made in semantic mapping, this survey also 

shed light on the challenges that persist, such as semantic data gathering, map representation, environmental considerations, and 

the complexities of collaboration among mobile robots. 

In parallel to the investigation into semantic mapping, (Qu et al., 2021) contributed to the mapping literature by conducting a 

comparative analysis of three 2D Simultaneous Localization and Mapping (SLAM) algorithms: Gmapping, Hector SLAM, and 

Cartographer. Their study centered on mapping performance and involved the evaluation of various sensor combinations, 

including LIDAR, stereo cameras, and IMU. The findings were noteworthy, as they revealed that the Cartographer algorithm 

outperformed the others, excelling in the generation of accurate and informative maps with minimal errors. Additionally, the 

researchers identified the superiority of LIDAR scans over ZED scans as input for mapping algorithms, and they emphasized the 

importance of sensor fusion, particularly the combination of LIDAR scans, ZED odometry, and IMU data, in achieving optimal 

mapping results. 
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Building upon this exploration of SLAM algorithms, (Yagfarov et al., 2018) conducted a study comparing three popular ROS- 

based 2D SLAM libraries: Google Cartographer, Gmapping, and Hector SLAM. Their evaluation employed precise ground truth 

data to assess map accuracy. The results consistently favored Google Cartographer as the top performer in producing highly 

accurate maps, followed by Gmapping. In contrast, Hector SLAM, relying solely on LIDAR data and lacking loop closure 

mechanisms, yielded less accurate results. The implications of this research were clear, suggesting Google Cartographer as a 
preferred choice for generating high-quality 2D maps with LIDAR on mobile robots. 

Extending beyond the realm of robotics but still relevant to mapping, (Cho, Lee, & Kim 2023) introduced a novel approach to 

autonomous vehicle motion planning using occupancy grid maps. Their method incorporated a single constraint based on the 

occupancy grid map, permitting traversal only in cells with values below a predefined threshold. This approach simplified 

complex motion planning problems and reduced computational costs by integrating the constraint into the motion planning 

algorithm through a single barrier state. Real-time simulations demonstrated the tangible benefits of their approach, including 

improved safety, reduced time costs, and heightened robustness compared to other methods. 

These studies collectively contribute to the understanding of mapping in mobile robotics. The comparative analysis of SLAM 

algorithms provides insights into the most effective algorithms and sensor combinations for accurate and informative maps. The 
findings from both studies have significant implications for improving mapping capabilities in mobile robotics, paving the way 

for future advancements in the field. 

Localization: 

The field of mobile robotics has seen substantial advancements in the area of localization. Researchers have been hard at work, 

aiming to boost precision, resilience, and adaptability in this crucial aspect of robotics. Among the various localization methods 
explored, the Adaptive Monte Carlo Localization (AMCL) algorithm stands out as a noteworthy approach. (Baek et al., 2022) 

contributed to the domain by developing a 3D global localization method tailored specifically for underground mines. They 

harnessed mobile LiDAR mapping and point cloud registration techniques to achieve precise matching of local point cloud 

datasets. This innovation holds tremendous promise for enhancing 3D position recognition in the challenging and dynamic 

environments of underground mines. 

For mobile robots, maintaining global pose awareness is crucial, especially when faced with scenarios such as kidnap recovery. 

(Li et al., 2023) proposed an ingenious solution based on ultra-wide-band technology. Their adaptive Monte Carlo localization 

algorithm leveraged ultra-wide-band modules and incorporated obstacle noise within global grid maps, significantly improving 

the robot's chances of swiftly recovering its global pose when lost or kidnapped. 

In the realm of agricultural robotics, (Raikwar et al., 2023) addressed the limitations of relying on Global Navigation Satellite 

Systems (GNSS) for navigation. Their approach involved the implementation of a 2D LIDAR SLAM-based localization scheme, 

achieving remarkable positioning accuracy of approximately 0.2-0.3 meters. This breakthrough empowers autonomous navigation 

in static agricultural settings, independent of GNSS signals. 

Efficient localization techniques play a pivotal role in logistics, particularly in the warehousing domain. (Tripicchio et al., 2022) 
conducted a comprehensive study comparing different methods for 3D multilateration of passive UHF RFID tags. Their research 
demonstrated centimeter-level accuracy for 3D localization and sub-centimeter accuracy for 2D localization, offering valuable 
insights into optimizing localization techniques in warehouse logistics. 

In the context of AMCL, (Wang et al., 2018) addressed critical challenges such as initial location speed, stability, and robustness. 

Their proposed algorithm, grounded in a UWB array, aimed to enhance the performance of the Adaptive Monte Carlo 

Localization algorithm. This advancement holds great promise for improving the localization of mobile robots. 

(Singh et al., 2023) introduced a robust methodology for implementing localization and navigation schemes in autonomous 

mobile robots. By harnessing the Robot Operating System (ROS) framework and integrating various ROS packages and 

algorithms, their approach achieved highly accurate pose identification, mapping, and robot control, both in simulations and real- 

world environments. 

While these diverse localization methods contribute significantly to the field of mobile robotics, our research design will 

primarily emphasize the utilization of the Adaptive Monte Carlo Localization (AMCL) algorithm. Building upon AMCL's 

strengths and integrating it with other relevant techniques, our aim is to create a robust and adaptable localization framework 

capable of addressing the unique challenges posed by complex and dynamic environments. This singular focus on AMCL ensures 

a cohesive and effective approach to enhancing mobile robot navigation. 

Table 1: Summary of Localization (AMCL) Methods from Previous Studies 
 

Authors (Year) Methodology Key Contributions Experiments 

(Baek et al., 2022) 3D Global Localization 

with LiDAR. 

Precise 3D position recognition 

in underground mines 

Underground mine 

environments 

(Li et al., 2023) Ultra-Wide-Band Efficient global pose recovery Various robot scenarios 
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  (UWB) Technology. for mobile robots   

(Raikwar et al., 2023) 2D LIDAR SLAM- 
Based Localization. 

High positioning accuracy for 

agricultural robotics. 

Static agricultural 

settings 

(Tripicchio 

2022) 

et al., 3D Multilateration of 

UHF RFID Tags 

Centimeter-level accuracy for 

warehouse logistics 

Warehouse 

environments 

(Wang et al., 2018) UWB Array for AMCL 
Localization 

Improved 
Adaptive 

Localization 

performance 
Monte 

of 
Carlo 

Various robot scenarios 

(Singh et al., 2023) ROS-Based 

Localization and 

Navigation 

Highly accurate pose 

identification and mapping in 

mobile robots 

Simulated and real- 

world environments 

III. SLAM (Simultaneous Localization and Mapping) 

In the world of robotics and autonomous navigation, Simultaneous Localization and Mapping (SLAM) has emerged as a 

fundamental tool, enabling robots to navigate autonomously within intricate surroundings. This field has seen substantial research 

and development efforts, leading to a wide array of approaches geared towards tackling the intricate challenges linked to mapping 

and localization. One of the most prominent methods in the field is Grid-Based SLAM, which offers a structured framework for 

mapping and localization by discretizing a robot's environment into grid cells. Each cell stores information about the 

corresponding space's occupancy, effectively creating a map. A pivotal breakthrough was introduced by (Wang et al., 2018) they 

merged Grid-Based SLAM with Ultra-Wide-Band (UWB) technology. This integration revolutionized the accuracy of pose 
calculation, effectively mitigating initial localization challenges related to speed and stability. Grid-Based SLAM, complemented 

by UWB, has emerged as a robust solution, addressing initial localization issues. In another research, (Baek et al., 2022) applied 

this approach to the domain of underground mining, achieving precise 3D position recognition through local point cloud dataset 

matching, opening new horizons for its application in niche environments. Innovations in Grid-Based SLAM approaches extend 

beyond algorithmic developments. (Hampton et al., 2017) introduced the RFS-SLAM robot, an open-source and cost-effective 

platform designed to excel in SLAM tasks. The platform incorporates a novel occupancy-grid SLAM algorithm grounded in 

random-finite-sets (RFS). Equipped with a LIDAR-Lite 2 laser range finder, this platform demonstrates remarkable success in 

correcting odometry errors and generating accurate maps in indoor environments. Its versatility paves the way for diverse 

applications. 

(Azak & Erdogan 2018) ventured into the integration of Grid-Based FastSLAM within the V-REP robot simulation program. 

Their experimentation, employing a Pioneer 3 DX mobile robot equipped with sensors, concentrated on parameter variations. 

This study unveiled the nuanced trade-offs between accuracy and computational efficiency, enriching our comprehension of 

optimal parameter tuning for enhanced SLAM performance. 

(Pedrosa et al., 2020) brought efficiency to the forefront with an implementation of FastSLAM-based Rao-Blackwellized Particle 

Filter (RBPF). Their solution, complemented by multithreading and scan matching, achieved the delicate balance between speed 

and accuracy. Developed within the Robot Operating System (ROS), this software contributes to the expanding repository of 

efficient SLAM algorithms for real-time applications. Grid-Based SLAM's journey also includes a notable contribution from 

(Roh et al., 2011), who introduced a novel Fast SLAM method. This approach utilized polar scan matching and a particle weight- 

based occupancy grid map, catering to the demands of mobile robot navigation in large-scale indoor environments. 

(El et al., 2010) addressed the computational efficiency of scan matching within SLAM algorithms. They harnessed streaming 

SIMD extensions (SSE) instructions to streamline scan matching operations, significantly reducing computational time while 

maintaining practicality without specialized hardware. (Wongsuwan et al., 2017) introduced the Corrective Gradient Refinement 

(CGR) algorithm as an enhancement to the Rao-Backwellized Particle Filter (RBPF) framework. This innovation refines mapping 

solutions and curtails memory consumption, contributing to the progression of pose-graph construction in SLAM. 

Beyond Grid-Based SLAM, the landscape of SLAM applications is vast and continually expanding. SLAM's reach extends across 

diverse sectors, with each field utilizing unique SLAM types and methods tailored to address specific challenges. In agriculture, 

Kemper et al. (2022) harnessed the LeGO-LOAM algorithm to enable agricultural robot navigation through blueberry bush rows. 

This breakthrough highlights the potential of simulation-based navigation systems in optimizing agricultural operations, paving 

the way for precision agriculture. 

In the healthcare sector, (Kadam et al. 2023) demonstrated the capabilities of ROS-based assistive robots utilizing the Google 

Cartographer SLAM algorithm for real-time mapping. This application enhances healthcare delivery by facilitating the safe and 

efficient movement of robots in healthcare settings, supporting healthcare workers and improving patient care. 

Researchers are actively developing novel SLAM methods to enhance accuracy and efficiency. (Cui et al., 2021) focused on 

enhancing the positioning accuracy of pure visual SLAM in fast motion and complex indoor environments. Their visual-inertial 
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information fusion SLAM method, based on Runge-Kutta improved pre-integration, significantly improved accuracy by avoiding 

errors caused by first-order approximation. 

(Kadam et al., 2023) demonstrated the simulation of a multi-purpose medical assistive robot using the Robot Operating System 

(ROS) and the Google Cartographer SLAM algorithm. This successful implementation highlights the potential of ROS-based 

assistive robots in healthcare, benefiting health workers, patients, and healthcare organizations. 

(Mantha et al.,2022) investigated fiducial marker network characteristics for autonomous mobile indoor robot navigation. Their 

findings provide valuable insights for achieving successful navigation in a cost-effective and computationally efficient manner, 

contributing to improved navigation systems. 

In the construction industry, (Xiang et al., 2022) addressed the challenge of SLAM for construction machinery in dynamic 

construction sites. Their affordable SLAM method, utilizing a multi-layer grid map, optimized machine operations by providing 
accurate environmental information. This research contributes to the advancement of SLAM techniques in the construction 

industry, enhancing safety and efficiency. 

This comprehensive exploration underscores the ever-expanding horizons of SLAM technologies, from foundational Grid-Based 

SLAM to innovative applications in diverse fields. The plan is to leverage the Grid-Based FastSLAM method to further advance 
the capabilities of SLAM in autonomous robotics, building upon the rich foundation and recent innovations in the field. This 

approach is expected to enhance mapping and localization accuracy while ensuring efficiency in real-world applications. 

The landscape of SLAM technologies continues to evolve, driven by the need for more accurate and robust autonomous 

navigation systems. As researchers and engineers push the boundaries of what is possible, the future holds the promise of even 

more groundbreaking developments in SLAM, enabling robots to operate effectively and autonomously in increasingly complex 
environments. 

Table 2: Summary of Review on Various SLAM methods 
 

Authors (Year) Methodology Key Contributions Experiments 

(Wang et al., 2018) Grid-Based SLAM with 

UWB technology 

Improved pose calculation accuracy 

with UWB integration 

Simulation, Real- 

world. 

(Baek et al., 2022) Grid-Based SLAM in 

underground mining 

Precise 3D position recognition 

through local point cloud matching 

Underground mining 

environment 

(Hampton et al., 

2017) 

RFS-SLAM robot with 

LIDAR-Lite 2 

Open-source platform correcting 
odometry errors and generating 
accurate maps 

Indoor environments 

Azak & Erdogan 

(2018) 

Grid-Based FastSLAM 

within V-REP simulation 

Parameter variations study for 

enhanced SLAM performance 

Simulation (V-REP) 

(Pedrosa et al., 
2020) 

FastSLAM-based RBPF 
with multithreading and 

scan matching 

Achieved speed and accuracy 
balance with RBPF and 

multithreading 

Real-time 
experiments within 

ROS 

(Roh et al., 2011) Fast SLAM method with 

polar scan matching 

Enhanced navigation in large-scale 

indoor environments 

Real-world 

experiments 

(El et al., 2010) Streamlined scan 

matching using SSE 

instructions 

Improved computational efficiency 

without specialized hardware 

Simulation 

(Wongsuwan et al., 

2017) 

Corrective Gradient 
Refinement (CGR) 

algorithm 

Enhanced mapping solutions with 

reduced memory consumption 

Real-time 

experiments within 

ROS 

Obstacle Avoidance 

Obstacle avoidance is a critical aspect of mobile robot navigation in complex environments, and researchers have been actively 

developing innovative methods to enhance this capability. In one such study (Song, 2022) made notable contributions to this 

field. he developed a strategy utilizing multi-sensor technology and fuzzy control algorithms to enhance obstacle avoidance 

accuracy and optimize path planning in complex environments. By integrating data from multiple sensors and employing fuzzy 

control algorithms, this approach promises improved obstacle avoidance, laying a foundation for future research in this area. (Li 

et al., 2020) proposed a novel obstacle avoidance method based on machine vision for dynamic obstacle detection. By combining 

the YOLO-v3 object detection algorithm with the dynamic window approach (DWA), they achieved real-time detection and 
avoidance of dynamic obstacles. This approach exhibits potential in enhancing local obstacle avoidance performance, benefiting 
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the operability of mobile robots in dynamic environments. (Li et al., 2023) explored an intriguing concept of intelligent physical 

attack strategies for mobile robots. They demonstrated the potential of these strategies in trapping robots without prior knowledge 

of system dynamics. Efficient attack algorithms were introduced and validated through simulations and real-life experiments, 

shedding light on the exploration of physical threats and defense mechanisms in robotics. 

(Huber et al., 2023) proposed a control scheme that combined high-level input commands with fast reactive obstacle avoidance 

(FOA). By utilizing sparse and asynchronous perception, this approach processed sensor data efficiently and enabled real-time 

collision avoidance. The controller demonstrated its efficiency in obstacle evaluation through experiments in cluttered indoor and 

dynamic outdoor environments. 

In another research, (Kim et al., 2017) introduced the Dual Expanded Guide Circle (Dual-EGC) algorithm, enhancing obstacle 

avoidance in remotely operated mobile robots. Their algorithm outperformed the original EGC method, exhibiting higher obstacle 
avoidance efficiency and faster execution speeds. This improvement has significant implications for the control and operation of 

remotely operated mobile robots. 

(Zhang et al., 2019) addressed obstacle avoidance for two-wheeled mobile robots using the Dynamic Window Approach (DWA) 

algorithm. Their study demonstrated the algorithm's effectiveness in facilitating obstacle avoidance in controlled environments. It 
provided a foundation for further exploration of advanced algorithms in robotics. 

(Mata-Machuca et al., 2021) conducted experimental verification of a leader-follower formation control system for two-wheeled 

mobile robots with obstacle avoidance. Their approach showcased successful performance in real-world scenarios, highlighting 

its potential for coordinated leader-follower formations and obstacle avoidance. 

(Cheong et al., 2020) developed an intelligent garbage bin robot capable of autonomous garbage retrieval. Utilizing the Robot  

Operating System (ROS), their robot effectively managed waste collection, navigated autonomously, and avoided collisions, 

offering a promising solution to improve hygiene in open public spaces. 

(Tüfekçi et al., 2023) performed an experimental comparison of global planners for mobile robots navigating unknown 

environments with dynamic obstacles. Their study assessed Global Planner, NavfnROS planners, and Carrot Planner within the 
ROS package in two distinct environments. NavfnROS planners exhibited the fastest results, emphasizing the need for further 

testing in complex scenarios. 

These studies collectively advance the field of mobile robotics by improving obstacle avoidance techniques. By integrating 

various methodologies, from fuzzy control algorithms and machine vision to intelligent attack strategies and fast reactive obstacle 

avoidance, researchers enhance the accuracy, efficiency, and adaptability of obstacle avoidance systems contributions with 

substantial implications for robotics, automation, and autonomous navigation. 

These developments have significant implications for various domains, including robotics, automation, and autonomous 

navigation. 

Table 3: Compilation of Prior Research Findings on Obstacle Avoidance 
 

Authors Methodology Key Contributions Experiments 

(Song, 2022). Multi-sensor technology and 

fuzzy control algorithms 

Improved obstacle avoidance 

accuracy and optimized path 

planning in complex environments. 

Complex operating 

environments 

(Li et al., 

2020) 

Machine vision-based 
obstacle detection with 

YOLO-v3 and DWA 

Real-time detection and avoidance 
of dynamic obstacles, enhancing 

local obstacle avoidance 
performance. 

Real-time dynamic 

environments 

(Li et al., 

2023) 

Intelligent physical attack 

strategy for mobile robots 

Efficient attack algorithms, trapping 

robots without prior knowledge of 

system dynamics. 

Simulations and real- 

life experiments 

(Huber et al., 

2023) 

High-level input command 

combined with fast reactive 

obstacle avoidance (FOA) 

Efficient real-time collision 

avoidance through sparse and 

asynchronous perception. 

Cluttered indoor and 

dynamic outdoor 

environments 

Kim & Kim. 

(2017) 

Dual Expanded Guide Circle 

(Dual-EGC) algorithm 

Enhanced obstacle avoidance 

efficiency, reduced travel distances, 
and faster execution speeds. 

Simulations 

(Zhang et al., 

2019). 

Dynamic Window Approach 

(DWA) algorithm 

Effective obstacle avoidance for 

two-wheeled mobile robots. 

Controlled 

environments 

http://www.ijltemas.in/


INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING, 

MANAGEMENT & APPLIED SCIENCE (IJLTEMAS) 

ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIV, Issue I, January 2025 

www.ijltemas.in Page 153 

 

 

 (Mata- 
Machuca et al., 
2021) 

Leader-follower formation 
control system with obstacle 
avoidance 

Successful performance in real- 
world scenarios, enabling 
coordinated leader-follower 
formations and obstacle avoidance. 

Real-world scenarios  

(Cheong et al., 

2020) 

Robot Operating System 

(ROS) for autonomous 
garbage retrieval 

Efficient waste collection, 

autonomous navigation, and 
collision avoidance for improved 

hygiene in open public spaces. 

Autonomous operation 

in open public spaces 

(Tüfekçi et al., 

2023) 

Experimental comparison of 

global planners 

NavfnROS planners exhibited the 

fastest results in navigating 
unknown environments with 

dynamic obstacles. 

Unknown 

environments with 
dynamic obstacles 

Robot Operating System (Ros) 

In recent years, ROS has emerged as a powerful platform for developing robotic systems, enabling researchers to address critical 

challenges in navigation, perception, control, and human-robot interaction. The reviewed studies demonstrate the versatility and 

effectiveness of ROS across various applications, showcasing its potential for creating intelligent and efficient robotic systems. 

In the study by (Megalingam et al. 2023), an autonomous navigation platform with human-robot interaction was proposed and 

implemented for indoor service robots. By utilizing ROS, the researchers developed algorithms for autonomous navigation, 

speech processing and recognition, and object detection and recognition. The system was evaluated through a confusion matrix 

generated from 125 different cases, demonstrating a decent level of correctness with an accuracy rate of 0.925. This research 

contributes to the development of efficient service robots that assist individuals with physical challenges and visual impairments 

in their daily activities. 

(Nwankwo et al., 2023) addressed the limitations of commercially available intelligent transport robots by developing an open- 

source mobile robot called ROMR. Utilizing ROS, ROMR utilized off-the-shelf components, additive manufacturing 

technologies, and a consumer hoverboard. The study validated the robustness and performance of ROMR through real-world and 

simulation experiments, highlighting its advantages over commercial platforms, including affordability, customization options, 

and compatibility with ROS. ROMR offers a cost-effective and customizable solution for research and industrial applications. 

(Prasad et al., 2023) focused on designing and developing the software stack of an autonomous vehicle using ROS. Their work 

encompassed various aspects such as SLAM-based path tracking, computer vision-based controller, and intelligent object 

avoidance. Promising results were obtained in a virtual environment, and future work will focus on improving module robustness 

and incorporating advanced techniques. This research contributes to the development of efficient autonomous vehicles with 

advanced capabilities. 

(Zhang et al., 2023) tackled the implementation and optimization of the ORB-SLAM2 algorithm on mobile robots within the 

ROS operating system. They addressed the challenges of running the algorithm directly on ROS and the limitations of using a PC, 

resulting in inefficiency and reduced flexibility. By building a ROS operating system on an embedded system and optimizing the 

algorithm's CPU usage, the researchers achieved efficient algorithm operation and reduced cost and hardware configuration 

requirements. The study validated their approach by demonstrating the generation of grid maps for robot autonomous navigation, 

highlighting the advantages of the ROS operating system. 

(Duraisamy et al., 2023) explored multi-sensor fusion for off-road drivable region detection. By combining deep learning-based 

semantic segmentation with LiDAR-based ground segmentation, the researchers achieved improved accuracy in detecting 

drivable regions. The study emphasized the potential for further enhancements, such as incorporating interpolated point cloud 

data and applying the solution to path planning for mobile robots. This research contributes to the development of robust off-road 

navigation systems. 

(Cihlar et al., 2023) focused on the simulation of autonomous robotic systems for intelligence and reconnaissance operations. By 

utilizing ROS and the Gazebo simulator, the researchers accelerated the development and evaluation of algorithms, enabling 
realistic simulations without risking damage to hardware. Their study showcased the flexibility of the solution, demonstrating a 

scenario involving flying and terrestrial robots in a Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) 

mission. ROS proved to be a suitable framework for intelligence and reconnaissance simulations. 

Collectively, these studies demonstrate the diverse applications and capabilities of ROS, highlighting its significance in advancing 

the field of robotics and enabling the development of intelligent and efficient robotic systems. 
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Current Study: 

After reviewing recent advancements in the field and drawing insights from other researchers' work, we will implement these 

techniques using the Robot Operating System (ROS). Our study will focus on integrating Grid-Based SLAM, AMCL for 

localization, and a sophisticated obstacle avoidance system to enhance the robot's autonomous navigation capabilities. 

Model Architecture 

This methodology outlines the step-by-step process for developing an advanced autonomous navigation system for differential 

drive mobile robots. By leveraging the power of ROS2, along with technologies such as URDF, SLAM, AMCL, Gazebo, and 

RViz2, we aim to create a robust and reliable solution. This methodology focuses on the integration of these technologies, which 

collectively enable the accurate simulation, mapping, localization, and navigation of the mobile robot. 

Setting Up Software Tools and ROS2 for Robotic Development: 

To establish the software environment, Ubuntu 22.04 and ROS2 Humble were installed. A ROS2 package named "mythesis_bot" 

was created to serve as a workspace for system implementation and code organization. 

Key Concepts in ROS2 and Coordinate Systems: 

ROS2 Core and Nodes: The foundation of ROS2 lies in its core, which manages communication among nodes. Nodes, modular 

software units, perform tasks like control and planning. They collaborate through asynchronous data exchange using "topics." 

ROS2 Topics, Subscribers, and Publishers: Topics enable nodes to share data asynchronously. Subscribers listen to topics to 

receive messages, while publishers generate messages for specific topics. This mechanism allows nodes to collaborate without 

direct connections. 
 

Figure 2: ROS Topic Communication between Nodes and Subscribers 

Joint State Publisher: This crucial ROS2 package manages a robot's joint state, providing data about joint locations, velocities, 

and efforts. It ensures accurate and real-time information sharing for visualization, control, and more. 

Robot State Publisher: This component broadcasts a robot's joint and linkage state. Obtaining this data from the robot's URDF 

file, it promotes uniform coordination and communication among various nodes. 

ROS Coordinate Conventions: ROS2 employs standardized coordinate frames, such as 'base_link,' following conventions 

specified in ROS Enhancement Proposals (REPs) like REP 105. These conventions provide consistent orientation and alignment. 

Coordinate Systems and Frames: Robots use coordinate frames to represent positions and orientations. These frames create a 

hierarchical structure, with the world frame as the global reference. Frames like 'odom' and 'base_link' help define robot stance 

and motion. 

Hierarchy of Frames: The hierarchy starts with the world frame, followed by frames like 'odom' and 'base_link.' Each frame 

inherits the transformation of its parent frame. Robot components are represented using link frames. 

URDF Robot Frames: The URDF defines frames like 'world,' 'odom,' and 'base_link.' Each frame represents a specific part of 

the robot. Link frames, connected by joints, form the robot's kinematic chain. 

By adhering to ROS2's standardized conventions and utilizing its coordination mechanisms, a cohesive software environment is 

created, enabling accurate robot representation, seamless communication, and effective navigation. This is vital for implementing 

tasks like Simultaneous Localization and Mapping (SLAM) in the Gazebo simulator. 

Rqt graph: 

Rqt_graph is a crucial tool within the ROS (Robot Operating System) network, providing essential insights into the connections 

and dependencies among ROS nodes and topics. This visualization tool is invaluable for understanding the intricacies of ROS- 
based software architectures, facilitating efficient debugging, optimization, and informed decision-making in robotics and 

automation applications. 
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Differential Drive Robot Design: 

Differential Drive Robots: 

Differential-drive control is a widely used control mechanism for robots, including the one being designed in this project. A 

differential-drive robot consists of two driven wheels, typically placed on the left and right sides of the robot, which provide the 

primary means of motion. Other wheels, such as caster wheels, are included primarily for stability and can rotate freely in any 

direction. 

The advantage of using a differential-drive configuration is its simplicity in terms of understanding, construction, and control. 

This setup allows the robot to be highly maneuverable, capable of rotating in place, and navigating tight spaces with ease. Unlike 

vehicles that require a turning radius or multiple-point turns, differential-drive robots can perform agile maneuvers. 

In the context of this research project, the differential-drive robot being developed is envisioned as a small box-shaped robot. The 

driven wheels are positioned near the rear of the robot, while a caster wheel is located at the front. 
 

Figure 3: Differential drive Model 

(𝑥 𝑦̇̇   𝜃̇  ) = [𝑐𝑜𝑠𝜃̇ 0 𝑠𝑖𝑛𝜃̇ 0 0 1 ][𝑣 𝜔 ] ...................... equation 1 

𝑉 = (
𝑣𝑅 + 𝑉𝐿) ................................ equation2 

2 

𝜔 = (
𝑣𝑅 − 𝑉𝐿) .............................. equation3 

𝑑 

As shown in the diagram above, the differential drive robot consists of two wheels, independently driven, enabling the robot to 

move in different directions. The robot's motion is governed by the general kinematic equation, as shown in Equation 1. This 

equation relates the translational velocity (V) and the angular velocity (ω) of the robot, as expressed in Equations 2 and 3, 

respectively. The equation assumes the velocity of the rear axle midpoint as the robot's velocity, considering an imaginary axle 

connecting the rear wheels. 

Creating the URDF Robot 

The URDF (Unified Robot Description Format) is utilized to define the physical components and their relationships within a 

robot. To enhance organization and maintainability, it is common to divide the URDF configuration into multiple files and 

include them in a main file. This modular approach simplifies maintenance tasks and promotes collaboration among team 

members. 

In the development of the URDF differential drive robot, the configuration was structured using a modular file system. Separate 

files were created for different components, such as the core structure and sensors, to improve organization and facilitate better 

management. This modular approach allows for easy customization and maintenance of individual components without impacting 

the entire robot description. 

By adopting this modular file structure, the process of creating the URDF robot becomes more organized, manageable, and 

conducive to collaborative efforts. It allows for efficient development and customization of the robot's description and launch 
configuration, promoting flexibility and ease of maintenance in the long run. 

Creating the visual structure 

To establish the visual structure of the robot, a core file named "robot_core. xacro" was defined. The Xacro tool is used to define 

the visual structure of the robot. Through this tool, links and joints representing the physical components and their connections 

are created. The process starts with the definition of the base link, referred to as 'base_link,' and progresses to include other 
components such as the chassis, wheels, and caster wheel. Each link and joint are defined using XML tags, incorporating 

appropriate origins, geometries (such as boxes and cylinders), and materials (including colors) to ensure an accurate visual 

representation. 

http://www.ijltemas.in/


INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING, 

MANAGEMENT & APPLIED SCIENCE (IJLTEMAS) 

ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIV, Issue I, January 2025 

www.ijltemas.in Page 156 

 

 

Table 4: URDF design specifications 
 

Base Link base_link 

Chassis Link chassis 

Dimensions 0.3m x 0.3m x 0.15m 

Material white 

Inertial Properties mass = 0.5kg 

Left Wheel  

Joint left_wheel_joint 

Parent Link base_link 

Child Link left_wheel 

Dimensions Cylinder (radius 0.05m, length 0.04m) 

Material blue 

Inertial Properties mass = 0.1kg 

Right Wheel  

Joint right_wheel_joint 

Parent Link base_link 

Child Link right_wheel 

Dimensions Cylinder (radius 0.05m, length 0.04m) 

Material blue 

Inertial Properties mass = 0.1kg 

Caster Wheel  

Joint caster_wheel_joint 

Parent Link chassis 

Child Link caster_wheel 

Dimensions Sphere (radius 0.05m) 

Material black 

Inertial Properties mass = 0.1kg 

Sensor Integration: 

In the development of an autonomous navigation system for differential drive mobile robots, sensor integration plays a crucial 
role in providing the necessary perception and localization capabilities. The integration of sensors such as LiDAR and cameras 

enables the robot to perceive its environment, make informed decisions, and navigate autonomously. 

Adding Lidar 

Lidar, or light detection and ranging, is a type of sensing that uses lasers to map the area around it in detail and measure distances. 

When a laser pulse strikes an item, a timer measures how long it takes for the light to bounce back. Lidar systems can precisely 

calculate the distance, shape, and location of objects in the environment by examining the return time and intensity of the 

reflected light. 

The usage of lidar is important in the context of this research. To execute SLAM (Simultaneous Localization and Mapping) and 

AMCL (Adaptive Monte Carlo Localization), the robot needs to be able to receive precise and thorough information about its 

surroundings. SLAM refers to the process of creating a map of an unknown environment while simultaneously localizing the 

robot within that map. Using sensor data from the robot's sensors, such as lidar scans, the AMCL algorithm can estimate the 

robot's position and orientation in real-time. 

A local map of the robot's surroundings can be made by integrating lidar into the robot's system, which enables it to sense objects' 

distances correctly. This information is essential for the robot to navigate autonomously, avoid obstacles, and effectively plan its 

path. Additionally, the lidar data is utilized in the SLAM algorithm to build a map of the environment and refine the robot's 

localization estimates. 
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Table 5: Lidar Design Specification 
 

LIDAR Mounting "Laser_frame" with a fixed joint 

Number of Samples 360 samples per scan 

Angular Resolution 1 degree per sample 

Scanning Range Minimum Angle -3.14 radians 

Scanning Range Maximum Angle 3.14 radians 

Range Measurement 0.12 meters 

Maximum Range 6 meters 

Update Rate 5 Hz 

Published Message Type sensor_msgs/LaserScan 

 

Figure 4: Simulated mobile Robot in Gazebo 

Adding Camera 

The integration of cameras in robots holds immense importance for diverse robotic applications, providing human-like visual 

perception. Cameras enable robots to capture and process visual information about their surroundings, facilitating informed 

decision-making. This visual input empowers robots to navigate, detect obstacles, recognize objects and faces, and perform tasks 

requiring visual understanding. The overview encompasses camera types, image handling, compression, focal length, coordinate 

systems, integration in ROS, simulation in Gazebo, and sensor configuration, all contributing to the crucial role of cameras in 

enhancing robotic capabilities. 

Table 6: Camera Design Specification 
 

Camera Joint Type Fixed 

Parent Link chassis 

Child Link camera_link 

Origin Translation (x=0.305, y=0, z=0.08), Rotation (roll=0, pitch=0, yaw=0) 

Geometry Box (size: width=0.010, height=0.03, depth=0.03) 

Material Red 

Camera Optical Joint Type Fixed 

Parent Link camera_link 

Child Link camera_link_optical 

Origin Translation (x=0, y=0, z=0), Rotation (roll=-pi/2, pitch=0, yaw=-pi/2) 

Resolution 640x480 pixels 
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 Update Rate 30 Hz  

Horizontal Field of View Approximately 1.047198 radians (~60 degrees) 

Minimum Depth 0.05 meters 

Maximum Depth 3meters 

IV. Gazebo Simulation and Ros Visualization (Rviz) 

Gazebo Simulation: 

Gazebo, the open-source robotics simulation tool, stands as an essential innovation hub for the field of robotics. This versatile 

platform enables the replication of real-world scenarios within a secure virtual environment. During the design of the simulated 

environment for our robot in Gazebo, it was thoughtfully crafted with walls and obstacles, creating challenging scenarios that 

refine navigation algorithms and enhance robotic intelligence. This simulated environment, named "obstaclesworld," serves as a 

dynamic testing ground. Moreover, Gazebo serves as a cost-effective alternative to physical testing, reducing expenses and risks. 

In essence, it's a virtual haven where robotics pioneers’ experiment, iterate, and perfect autonomous navigation systems, shaping 

the future of robotics through immersive simulated challenges. Figure 5 shows our simulated environment in the gazebo. 
 

Figure 5: Simulated Environment in Gazebo 

Gazebo Tag Utilization and Sensor Integration: 

The URDF file is enriched with <gazebo> tags to specify Gazebo-specific configurations, enhancing the robot's visual 
representation in the simulation environment. The inclusion of <gazebo> tags enhance the simulation environment by providing 

accurate sensor data and improved visual representation, facilitating comprehensive robot testing. 

Lidar Simulation: To simulate the lidar and integrate it with ROS: 

The URDF gains a "laser_frame" link and joint to establish a reference point. Inside the <link> tag, a <gazebo> tag is added to 

simulate the lidar sensor. Lidar-specific parameters, like scanning range and resolution, are defined within the <ray> tag. The 

ROS plugin "libgazebo_ros_ray_sensor.so" is added using the <plugin> tag, enabling communication and LaserScan data 

publishing. 
 

Figure 6: lidar plugin integration in Gazebo 
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Camera Integration: Camera simulation is achieved as follows: 

A <sensor> tag is included within the <gazebo> tag to configure camera settings. The ROS plugin "libgazebo_ros_camera.so" is 

incorporated within the <sensor> tag for seamless Gazebo-ROS data exchange. 
 

Figure 7: Camera plugin integration in Gazebo 

Integration of Control Functionality for The Mobile Robot in Gazebo. 

To enable control of the robot's motion within Gazebo, the libgazebo_ros_diff_drive.so plugin was employed. This plugin 

facilitated the translation of commands received from the /cmd_vel topic into simulated movements within the Gazebo 

environment. In addition, it publishes the odometry information and transformations between frames, contributing to accurate 

position estimation. 

 

 

 
Figure 8: URDF Integration for Precise Robot Control in Gazebo Simulation 

Integration of Control Functionality into URDF 

To incorporate control functionality into the URDF model, a separate xacro file named "gazebo_control.xacro" was created. This 

file was subsequently included in the main URDF file, "robot.urdf.xacro."Within the "gazebo_control.xacro" file, a <plugin> tag 

was defined, specifying the libgazebo_ros_diff_drive.so plugin with configurable parameters. These parameters encompassed 

essential wheel information, limits, and output configurations, enabling precise control of the robot's behavior within the Gazebo 

simulation environment. 
 

 

 

Figure 9: Coordinate System and Motion Control 
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As seen in figure 9 above we have only two coordinates in use which are the linear X and angular Z Within the autonomous 

navigation system, the robot's motion control is primarily governed by two coordinates: linear X and angular Z. The linear X 

coordinate represents the forward or backward movement of the robot along its longitudinal axis. Moving forward is indicated by 

positive values, while moving backward is shown by negative numbers. On the other hand, the angular Z coordinate denotes the 

robot's revolution about its vertical axis. Positive numbers represent rotation going counterclockwise, whereas negative values 
represent rotation going clockwise. By manipulating these two coordinates, the Gazebo control plugin translates the velocity 

commands received on the /cmd_vel topic into appropriate simulated movements within the Gazebo environment. This allows the 

robot to navigate the virtual world by controlling its linear motion and rotation. 

Command Velocities (CMD Velocities): 

CMD velocities play a pivotal role in guiding a robot's motion and behavior. CMD velocities, often represented as linear and 

angular velocity commands, are the instantaneous directives sent to a robot's actuators, instructing them on how to move and 

orient in space. These commands dictate the robot's intended motion, facilitating navigation, control, and teleoperation. In the 

context of this dissertation, the analysis of CMD velocities is paramount, as it allows for a comprehensive assessment of the 

robot's motion control capabilities. By analyzing the robot's response to these velocity commands during navigation, we can 

evaluate its ability to follow predefined paths, respond to dynamic obstacles, and execute tasks effectively. 

Furthermore, studying CMD velocities provides insights into the robot's autonomy, stability, and adaptability, which are crucial 

factors in real-world applications. The subsequent sections of this dissertation will delve into the practical implementation and 

analysis of CMD velocities within the context of our robot design, utilizing tools such as URDF, Gazebo, and RViz in ROS2 to 

conduct a thorough evaluation of the robot's performance. 
 

Figure 10: Display of Command Velocities on Terminal During Navigation 

Integrated Architecture for Robot Navigation: URDF, State Management, and Gazebo Control 

By combining the URDF, Robot State Publisher, and Gazebo plugins, a comprehensive framework for accurate robot 

representation, state estimation, and simulated motion control is established. 

 

Figure 11: Robot Representation & Simulation Framework: URDF to Gazebo Control 
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In the figure 11 above, the split and unprocessed URDF/Xacro files serve as the initial representation of the robot's structure and 

properties. These files were divided into multiple parts to enhance modularity and reusability. Xacro macros and features are 

employed within the Xacro files to simplify the authoring and maintenance of the robot description. 

To process the Xacro files, the Xacro tool is utilized, which expands the macros and resolves includes, conditionals, and loops 

present in the Xacro files. The outcome of this process is a single processed URDF file that encompasses the complete robot 

description with all the macros and Xacro features resolved. 

The processed URDF file is then connected to the Robot State Publisher. This publisher subscribes to the joint state information 

and publishes the robot's state on the /tf topic, while also providing the robot description on another output. The Robot State 

Publisher generates the joint transforms based on the joint state information and publishes them on the /tf topic. The published 

joint transforms are received and managed by the TF (Transform) system in ROS, enabling other ROS nodes to access and 

transform data between different coordinate frames in the robot. 

Furthermore, the Robot State Publisher publishes the processed URDF data (robot description) on another output. This data 

represents a comprehensive description of the robot's structure, kinematics, and properties. Other ROS nodes can access and 

utilize this robot description for various purposes, such as visualization, simulation, motion planning, or any other relevant tasks. 

The processed URDF data is sent to a Gazebo control, which utilizes the libgazebo_ros_diff_drive.so plugin. This plugin enables 

control of the robot's motion within Gazebo by translating commands received from the /cmd_vel topic into simulated 
movements within the Gazebo environment. Additionally, the plugin publishes odometry information and transformations 

between frames, contributing to accurate position estimation. The control diagram shows an arrow connecting the robot 

description via the spawner to the Gazebo control. This indicates that the control receives command velocity inputs. 

Lastly, The Joint States, representing the current joint positions, can be subscribed to by other ROS nodes using the /joint_states 

topic. There is a feedback connection from the Joint States back to the Robot State Publisher to ensure that the updated joint states 
are available for generating the joint transforms and updating the robot's state. 

Rviz Visualization: 

RVIZ, a powerful graphical interface in ROS, offers versatile visualization capabilities with various plugins. Users can customize 

displays for robot data, sensor readings, and more, including point clouds, images, and 3D models. The TF Display visualizes 
coordinate frames in a robot system, while Interactive Markers enable real-time interaction. RVIZ also supports path and 

trajectory visualization, grid and map display for SLAM-generated maps, camera view simulation, and an intuitive user interface 

for easy configuration and customization of visualizations. 
 

Figure 12: Visualization of Robot TF in RVIZ 

 

 

Mapping and Localization 

Simultaneous Localization and Mapping (SLAM): 

Simultaneous Localization and Mapping (SLAM) is a crucial challenge in robotics, involving the creation of a map of an 

unknown environment while simultaneously determining the robot's position within it. This capability is vital for autonomous 

systems as it allows them to navigate and understand their surroundings by combining sensor data and motion information. 
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SLAM algorithms manage the complexity and uncertainty of real-world environments by integrating data from various sensors 

like laser scanners, cameras, and inertial sensors. The SLAM problem comprises mapping (creating the environment 

representation) and localization (determining the robot's position), and the main challenge is to solve both simultaneously to 

ensure accuracy in navigation and mapping. 
 

Figure 13: Simultaneous Localization and Mapping (SLAM) Applications. 

V. Overview of SLAM Methods: 

a) Feature-based SLAM: Feature-based SLAM relies on distinct visual features like landmarks or key points to estimate the 

robot's pose and create a map. However, it faces challenges in feature extraction, matching, and adapting to changing 

environments, which can be computationally demanding and error prone (Azzam et al., 2020). 

b) Pose Graph SLAM: Pose Graph SLAM represents the environment as a graph of robot poses and landmark positions. By 

maintaining a graph structure, pose graph SLAM can handle loop closures and perform global optimization to refine the map and 

robot's trajectory. However, pose graph SLAM requires extensive data association and computational resources to construct and 

optimize the graph. The accurate association of data with the graph nodes and the optimization process can be complex and 

computationally demanding. 

c) Grid-Based SLAM: Grid-Based SLAM discretizes the environment into a grid map, where each grid cell represents a specific 

location or occupancy status. Grid-based offers advantages such as robustness, global information, and memory efficiency in 
SLAM, (Wurm et al., 2010). 

Table 7: Comparison of SLAM Methods: 
 

SLAM Method Feature-based SLAM Pose Graph SLAM Grid-Based SLAM 

Method Extracts and tracks 

features 

Represents environment as a 

graph 

Discretizes environment into a 

grid 

Challenges Feature extraction, 

matching, robustness 

Data association, 

computational resources 

N/A 

Robustness Depends on feature 

extraction and matching 

quality 

Depends on data association 

and loop closure detection 

Can handle different sensor 

measurements 

Memory efficiency Requires storage of large 

feature databases 

Requires storage of pose 

graph and landmark 

information 

Requires less memory as 

information is stored in a grid 

structure 

Real-time 

performance 

Depends on feature 

extraction and matching 

speed. 

Depends on computational 

resources for graph 

optimization 

Can provide real-time mapping 

and localization 

Simplicity More complex due to 

feature extraction, 

matching, and association 

More complex due to graph 

optimization and loop 

closure detection 

Relatively straightforward to 

implement and understand 

Proposed SLAM Method (Grid-Based Fast Slam) 

In this research, the Grid-based FastSLAM algorithm was chosen due to its advantages over other SLAM techniques. Grid-based 
FastSLAM combines the benefits of FastSLAM with a grid-based map representation, making it a suitable choice for 
simultaneous localization and mapping tasks. 
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𝑡 

𝑡 

𝑡 

𝑡 𝑡 

𝑡 𝑡 

By utilizing a grid map, which divides the environment into cells, Grid-based FastSLAM provides a structured and efficient way 

to represent the environment. Each cell in the grid corresponds to a small area and maintains its occupancy state. This allows the 

algorithm to accurately track the occupancy information of the environment and construct a detailed map. 

The Grid-based FastSLAM algorithm consists of two main steps: prediction and correction. 

The mathematical expressions for the prediction and correction steps in Grid-based FAST SLAM: 

Proposed Algorithm, Grid-based FastSLAM. 

1: Procedure FastSLAM (𝑋𝑡−1 , 𝑈𝑡 , 𝑍𝑡 ) 

2:  𝑋𝑡 = 𝑋𝑡 = ∅ 

3: for m = 1 to M do 

4: 𝑋[𝑘] = 𝑀𝑜𝑡𝑖𝑜𝑛𝑈𝑝𝑑𝑎𝑡𝑒 (𝑈 , 𝑋[𝑘] ) 
𝑡 𝑡 𝑡−1 

5: 𝑊[𝑘] = 𝑆𝑒𝑛𝑠𝑜𝑟𝑈𝑝𝑑𝑎𝑡𝑒(𝑍 , 𝑋[𝑘]) 
𝑡 𝑡 𝑡 

6: 𝑀[𝑘] = UpdateOccupancyGrid (𝑍 , 𝑋[𝑘] , 𝑀[𝑘] ) 
𝑡 

7: 𝑋 = 𝑋 
 

+ ⟨𝑋
[𝑘] 

, 𝑊
[𝑘]
⟩ 

𝑡 𝑡 𝑡−1 

𝑡 𝑡 

8: end for 

𝑡 𝑡 

9: for K = 1 to M do 

10: draw i with probability 𝑊[𝑖] 

11: add ⟨𝑋[𝑖], 𝑀[𝑖]⟩ 𝑡𝑜 𝑋 
𝑡 𝑡 𝑡 

12: end for 

13: return 𝑋𝑡 

14: end procedure 

Prediction Step: The prediction step updates the particle poses based on the motion model. Let's denote the control input at time 

"t" as 𝑢𝑡 . The prediction is performed as follows: 

𝑥𝑘 =  𝑀𝑜𝑡𝑖𝑜𝑛𝑈𝑝𝑑𝑎𝑡𝑒(𝑢 𝑥𝑘  ) ......................... equation 4 
𝑡 𝑡 , 𝑡−1 

Here, Motion Update represents the motion model, which generates a new pose estimate 𝑥𝑘 based on the previous pose 𝑥𝑘 and 

control input 𝑢𝑡 . 
𝑡 𝑡−1 

Correction Step: The correction step updates the particle maps based on the sensor measurements. The correction is performed 

as follows: 

𝑚𝑘 = UpdateOccupancyGrid(𝑥𝑘 , 𝑚𝑘 , 𝑧 ) ...................equation 5 
𝑡 𝑡 𝑡−1 𝑡 

Here, Update Occupancy Grid represents the occupancy grid mapping algorithm, which updates the map 𝑚𝑘 based on the current 
pose 𝑥𝑘 the previous map 𝑚𝑘 and the sensor measurements 𝑧 . 

𝑡 𝑡−1 𝑡 

During the correction step, the measurement likelihood p(𝑧𝑡 | 𝑥𝑘 , 𝑚𝑘) is also calculated. This represents the probability of 

obtaining the sensor measurements 𝑧𝑡 given the pose 𝑥𝑘 and map 𝑚𝑘. 

The prediction and correction steps are performed iteratively for each particle in the FastSLAM algorithm. After updating the 

poses and maps, the importance weight 𝑤𝑘 of each particle is calculated based on the measurement likelihood. 

𝑤𝑘 = p(𝑧 | 𝑥𝑘 , 𝑚𝑘) ..........................................equation 6 
𝑡 𝑡 𝑡 𝑡 

The importance weights are then normalized to represent a probability distribution, and the resampling step is performed to select 

particles for the next iteration based on their weights. 

Optimizing Asynchronous SLAM Parameters in ROS. 

Within this research, a file named "mapper_params_online_asynchronous" was developed to optimize the critical parameters of 

online asynchronous SLAM for enhancing dynamic obstacle mapping. The primary objective is to increase the precision of robot 

navigation in dynamic environments through meticulous parameter configuration. This process encompasses various aspects, 

including sensor fusion strategies, dynamic object detection algorithms, trajectory prediction, map adaptation rates, 
communication latency management, uncertainty mitigation, collision avoidance thresholds, localization strategies, and map 
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visualization techniques. The research rigorously fine-tunes these parameters, aligning them with the specific dynamics of the 

environment and the robotic platform. The overarching goal is to elevate the accuracy and adaptability of robot navigation, 

particularly in the presence of dynamic obstacles, thereby reinforcing the capabilities of autonomous systems in environments 

marked by constant change. 

Localization 

AMCL (Adaptive Monte Carlo Localization): 

Adaptive Monte Carlo Localization (AMCL) is a widely used robotics algorithm that employs a particle filter to estimate a robot's 

pose. It offers robust adaptation to dynamic conditions, handles complexity, scales well for large environments, and provides real- 

time performance. When integrated with Grid-Based SLAM, AMCL utilizes the SLAM-generated grid map as its environment 

model, allowing for simultaneous and accurate localization within a mapped environment. AMCL demonstrates enhanced 

localization accuracy through adaptive particle weight adjustments based on laser-reflector information, as discussed by (Zou et 

al., 2020). Additionally, combining AMCL's stability with high-precision scan matching (Peng et al., 2018). 

Localization Model Description 

 

 

 

 

Figure 14: localization model description 

Figure 14 shows how our proposed localization model represents a critical advancement in mobile robotics by addressing the 

challenges of maintaining accurate robot pose estimation within a dynamic environment. Beginning at the robot's local frame, 

termed Base_Link, initial pose estimates are derived using dead reckoning methods, considering both translation and orientation. 
However, these estimates are susceptible to cumulative errors, leading to odometry drift, where inaccuracies in position and 

orientation become increasingly pronounced over time. To mitigate this, the model incorporates the /odom frame, which captures 

the robot's pose based on dead reckoning and odometry data. Yet, to achieve robust and globally consistent localization, the 

model features a prominent closed-loop connection from the robot's pose in /base to its position within the global map, as 

estimated by the Adaptive Monte Carlo Localization (AMCL) algorithm. This closed loop infuses real-time sensor data with the 

global map, enabling continuous refinement and correction of the robot's pose. This model's significance lies in its ability to 

ensure precise and reliable localization, even in environments marked by dynamic obstacles and extended operational durations. 

By effectively countering odometry drift, it enhances the robot's navigational capabilities, making it a pivotal tool for tasks like 

autonomous exploration, mapping, and navigation in real-world applications. 

Integration of AMCL with Grid-Based SLAM: 

The integration of AMCL with Grid-Based SLAM is performed to achieve simultaneous localization and mapping. The grid map 

generated by Grid-Based SLAM served as the environment model in AMCL. By comparing sensor measurements with the grid 

map, AMCL estimates the robot's pose while mapping the environment simultaneously. This integration allows for consistent and 

accurate localization within a mapped environment. 

NAV2 AND OBSTACLE AVOIDANCE 

Nav2 is a versatile ROS 2 navigation stack designed for autonomous robot navigation. It offers modular, adaptable, and scalable 

tools for path planning, control, and obstacle avoidance. Integrating Nav2 enhances the robot's ability to navigate autonomously 

and safely, making it a valuable addition to this research. 

NAV2 Planner: 

The NAV2 planner in ROS (Robot Operating System) is a sophisticated navigation framework that facilitates autonomous robot 

movement through complex environments. It encompasses two crucial components: the global planner and the local planner, each 

playing a distinct role in enabling safe and efficient navigation. 
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Role of Global Cost Map: 

Central to the global planner's decision-making process is the global cost map. This navigational tool assigns cost values to 

individual cells within the robot's environment, reflecting terrain difficulty, obstacle presence, and other attributes affecting 

navigability. The map allows the robot to understand environmental challenges and generate paths that minimize accumulated 

costs. 

Local Planner in Action: 

The local planner is a pivotal component in robot navigation, ensuring real-time obstacle avoidance and safe movement. Nested 

within path planning, it utilizes sensor data to guide the robot around obstacles and adapt to changing environments, resulting in 

smooth and collision-free navigation. 
 

Figure 15: Nav2 System Architecture 

The Nav2 system operates through a choreographed interaction between components. Sensor data informs the "Odometry," 

establishing the robot's initial state. High-level directives are processed by "Control," translating into "Cmd Velocity" signals via 

"Motion Control" that regulate the robot's path while ensuring stability. Simultaneously, "Path Planning" constructs an optimal 

route using the "Global Grid Cost Map" and refines it via the "Local Grid Cost Map." "Localization" aligns the robot's position 

with the map. The "Targets" component guides the mission objective. Within ROS 2's framework, data fluidly moves through 

nodes via "Cmd Velocity," harmonizing decisions and adjustments. This orchestrated synergy propels the robot adeptly through 

diverse terrains, achieving its mission. 

Integration of NAV2 for Static and Dynamic obstacles 
 

Figure 16: Integration of NAV2 for Static and Dynamic obstacles 

Figure 16 shows the method integrated for obstacle avoidance. here, there is a complex interaction between key components: the 

"Static Map," representing a foundational static map of known, unchanging obstacles generated through SLAM, and the "Live 

LiDAR Data," which captures real-time LiDAR sensor data, including dynamic obstacles such as moving people or objects. 

These components converge at the central "Cost Map Generation," where data from both the static map and live LiDAR inputs 

merge to create a dynamic cost map. This dynamic map informs path planning, allowing the robot to navigate adeptly while 

avoiding obstacles, whether static or dynamically detected. This integrated approach would be implemented in our system, 

enhancing the robot's navigation capabilities and ensuring safe and efficient traversal in various environments. 

http://www.ijltemas.in/


INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING, 

MANAGEMENT & APPLIED SCIENCE (IJLTEMAS) 

ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIV, Issue I, January 2025 

www.ijltemas.in Page 166 

 

 

Implementation of Navigation System 

In the previous chapter, we designed a comprehensive navigation system for a differential drive mobile robot, carefully selecting 

our SLAM method, discussing our AMCL model, and exploring Nav2 for obstacle avoidance. Now, we move into the practical 

phase by implementing this system within a simulated environment. This chapter provides a detailed implementation guide, 

including insights, code snippets, and configuration parameters to aid understanding of the system's operation. The aim is to guide 

fellow researchers and practitioners in replicating this autonomous navigation system effectively, with each section covering 

specific implementation steps for seamless adoption. 

Simulated Environment Setup 

Integration into Gazebo Simulation Environment 

In the process of integrating the URDF robot model into the Gazebo simulator, the gazebo_ros package and the spawn_entity.py 

script were employed. This combination seamlessly incorporated the robot into Gazebo by connecting the URDF model to the 

robot_description topic. To streamline the launch process, a launch file named "launch_sim.launch.py" was created. This launch 

file encapsulated essential commands for launching the robot_state_publisher with simulation time, initializing Gazebo with ROS 

compatibility, and spawning the robot entity. This consolidated launch file simplified the startup procedure, ensuring a smooth 

and efficient initialization of the simulation environment. 

Launching and driving the mobile Robot in Simulated Environment: 

To launch and drive the mobile robot in the Gazebo the following was done: 

Launching Gazebo: 

The command in figure 17 below, “ros2 launch mythesis_bot launch_sim.launch.py 

world:=./src/mythesis_bot/worlds/obstacles.world” was used to initiate the simulated environment for our robot using ROS2 

(Robot Operating System 2). In this command, ros2 serves as the command-line tool for interacting with ROS2. The launch 

command is utilized to commence ROS nodes based on a launch file. mythesis_bot represents the robot’s package. 

launch_sim.launch.py stands as the name of the launch file that specifies the configuration for the simulation. 

In addition, “world: =./src/mythesis_bot/worlds/obstacles.world” designates the world file that defines the environment in which 

the robot will operate. The world argument points to the file path of this environment definition. Executing this command sets up 

the simulated environment, allowing for experiments and tests to be conducted. 
 

Figure 17: Launching Command to Simulated Environment in Terminal 

Driving the Robot: 

Teleop_twist_keyboard: 

To drive the robot the command "ros2 run teleop_twist_keyboard teleop_twist_keyboard" is used in the terminal. This launches 

the teleop_twist_keyboard node and opens the keyboard interface. 
 

Figure 18: Teleop twist keyboard command in Terminal 
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Robot Control: 

Keyboard Interface: The keyboard interface provides instructions on how to control the robot. Press the designated keys (e.g., 'i' 

for forward movement) to generate Twist messages with the corresponding velocities. 
 

Figure 19: Keyboard Control Inputs for our Robot Navigation 

As Twist messages are published on the "/cmd_vel" topic, the robot receives the commands and responds accordingly, executing 

the desired movements in the simulation environment. 

Visualization in Rviz 

In Rviz, the topic was set to "map," and the fixed frame was set to "map" for map and robot pose visualization. This setup allows 

Rviz to subscribe to map data for real-time updates during mapping or display the estimated robot pose during localization. 

Visualizing Laser Scan Data in RViz: 

Implementation of SLAM for Autonomous Navigation 

The visualization of laser scan data in RViz played a crucial role in evaluating the lidar sensor's performance. To achieve this, a 

LaserScan display was added to the RViz workspace by clicking the 'Add' option in RViz's add panel and selecting 'LaserScan' 

from the dropdown menu. Subsequently, the LaserScan display options were configured by specifying the topic as '/scan,' where 

the lidar data had been published. This configuration allowed for the visualization of lidar data in RViz, providing valuable 

insights into the accuracy of sensor readings, obstacle detection capabilities, and the overall sensor performance within the 

simulated environment. 

SLAM (Simultaneous Localization and Mapping) Implementation: 

As discussed in the methodology the grid-map based FastSlam approach is utilized for SLAM, employing a grid structure to 

represent the environment and track the robot's movement within it. This approach enables efficient mapping and localization 

processes. 

In RViz, the fixed frame is set to "odom", which designates the coordinate frame that remains fixed relative to the robot during 

mapping and localization. 

Launching SLAM: 

To launch the SLAM process, the following command in the figure below is executed in the terminal: 
 

Figure 20: SLAM Launch Command in Terminal 

This command initiates the slam_toolbox package using the designated configuration file, mapperparams_online_async.yaml, 

which holds the essential settings for executing online asynchronous mapping. 
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Figure 21: Initiating Mapping Process with Mapperparams_online_async. 

The ROS parameters specify the mode as "mapping", indicating that the SLAM system operates in mapping mode to focus on the 

simulated environment map. 

During map scanning, the slam_toolbox node is automatically launched from the provided launch script, initiating the map 

scanning process. To enable any form of navigation, the entire map is scanned and saved as a .yaml file. This is achieved by 

teleoperating the robot using the previously launched teleop_twist_keyboard node, allowing precise control of the robot's 

movements across every part of the map while the SLAM algorithm executes automatically. 

AMCL (Adaptive Monte Carlo Localization) Implementation: 

Once map was generated, the next step was to perform localization using the generated map. After the map has been saved, the 

AMCL (Adaptive Monte Carlo Localization) algorithm is employed for robot localization. The AMCL node subscribes to the 

"/scan" topic to receive laser scan data and utilizes this data along with the pre-built map provided by the map server. Using the 

AMCL algorithm, it estimates the most likely position and orientation of the robot relative to the map. Additionally, AMCL 

establishes the "Map to Odom Transform," aligning the global map coordinate system with the robot's localized pose in the 
odometry frame. This transformation allows the robot to navigate accurately within the global map coordinates based on its 

localized pose. 

Launching AMCL Localization Process 

To launch the localization process, the following commands in figure 22 below are executed in the terminal. These commands 

launch the nav2_amcl package, implementing AMCL for localization based on the generated map. The second command with the 

"amcl" argument specifies the specific AMCL node to run. 
 

Figure 22: AMCL Launch Command in Terminal. 

Implementation of Nav2 in Rviz2 for obstacle Avoidance 

Implementation Nav2 for obstacle avoidance on static map 

RViz2 was seamlessly integrated with the Navigation2 framework through the execution of the following command “ros2 launch 

nav2_bringup rviz2.launch.py” as shown in figure 24 below: 
 

Figure 23: Command to Launch Nav2 in Rviz 
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In the "Displays" panel of RViz2, the "Add" button was selected, followed by choosing the "Map" display. The "Map" topic was 

configured to "/global_costmap," enabling the visualization of the global cost map within RViz. This visualization provided 

insights into the navigational landscape. 

To implement the Navigation2 The process begins by selecting the "2D Pose Estimate" button in RViz's toolbar to set the robot's 

initial pose with a map click. Afterward, switching to the "2D Nav Goal" button enabled the definition of the desired goal pose 

through another map click. These actions facilitated the setup of both the starting position and the navigation target for the robot. 
 

Figure 24: Global Cost Map in Rviz 

Implementing Real-Time Dynamic Obstacle Avoidance 

The implementation of real-time dynamic obstacle avoidance began with the launch of the localization node using the command, 

"ros2 launch nav2_bringup localization_launch.py map:=./my_map_save.yaml usesim_time:=true." This command initialized the 

robot's map and synchronized its internal clock with real-world time. In RViz, the visualization was configured to display the map 
frame, and the map topic was correctly set to provide a visual representation of the robot's surroundings. 

 

Figure 25: Localization and Initial Setup command for Dynamic Obstacle Avoidance 

To guide the robot, its 2D pose was precisely set at the starting point using RViz. This step was crucial for the robot's orientation 

and understanding of its initial position. For optimized data flow and communication, data durability was configured to 'transient 

local,' ensuring that essential information reached the robot without delays. 

Next, the navigation node was launched with the command "ros2 launch nav2_bringup navigation_launch.py use_sim_time:=true 
map_subscribe_transient_local:=true." This node served as the brain behind the dynamic obstacle avoidance system, enabling the 

robot to remain responsive and adaptable. In RViz, the 'cost map' color scheme was selected, allowing visualization of the global 
cost map that dynamically updated to reflect changes in the environment. 

 

Figure 26: Navigation Node Launch Command 
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With the stage set, the robot's 2D goal pose was defined in RViz, acting as a beacon for the robot's pathfinding algorithms. 

Dynamism was introduced into the scenario by simulating dynamic obstacles within Gazebo. These obstacles challenged the 

robot's agility and responsiveness, putting its dynamic obstacle avoidance capabilities to the test. 

As the robot's performance was observed, it demonstrated its remarkable ability to identify and gracefully navigate around 

dynamic obstacles in real-time. It adjusted its trajectory on-the-fly, showcasing its newfound adaptability and responsiveness. 

This comprehensive implementation encapsulated the essence of real-time dynamic obstacle avoidance, enabling the robot to 

navigate a constantly evolving environment with finesse and precision. 

VI. Experimental Testing Result and Analysis 

In this chapter, we delve into the practical application of our autonomous navigation system by conducting experiments in various 

scenarios and analyzing the results. These experiments aim to validate the effectiveness and robustness of our navigation system 
under different conditions. We will perform quantitative and qualitative assessments to evaluate its performance. 

Experimental Setup 

The testing phase of our autonomous mobile robot initiative took place within the controlled confines of a simulated Gazebo 

environment integrated with ROS2. This provided a comprehensive platform to meticulously scrutinize the capabilities of our 
mobile robot concerning our grid based FastSlam Approach, AMCL, and obstacle avoidance. The robot's interactions and 

responses within this simulated environment were vividly visualized through the RViz tool. 

Testing Scenarios 

To rigorously evaluate the precision and reliability of the SLAM implementation, a series of testing scenarios were thoughtfully 

devised. These scenarios were designed to encompass different facets of the SLAM system and the navigation algorithm. The 

testing scenarios included: 

Simultaneous Localization and Mapping 

Mapping the Unknown Environment 

Experimental Procedure: The robot was launched in the simulated environment (gazebo) and Rviz and was then tasked to 

mapping the entire area. The (SLAM) process was initiated utilizing the grid Based FastSLAM method. During this process, the 

teleop_twist_keyboard was used for control, the robot utilized its onboard LiDAR (Light Detection and Ranging) sensors to 

systematically gather detailed environmental data. While navigating through the environment, the robot captured information 

about spatial layouts, obstacles, and distinctive features. 

Responsiveness to User Commands: 

The implemented autonomous navigation system demonstrated exceptional responsiveness to user commands via the 

teleop_twist_keyboard interface. The delay between user input and robot movement was negligible, providing a seamless 

teleoperation experience. The robot accurately followed the desired trajectory, validating the effectiveness of the control 

mechanism. 
 

Figure 27: Robot Mapping Simulated environment in RVIZ with Lidar Sensor. 

Mapping Results: 

The robot successfully mapped 97% of the unknown environment within a 15-minute timeframe. Discrepancies between the 
generated map and the ground truth map were within a 5% deviation. No significant gaps or missing areas were observed in the 

generated map. 
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Figure 28: Screenshot of Generated map in RVIZ Against Simulated Environment Gazebo 

Analysis: As seen in the Figure 28 above the results of the mapping accuracy tests demonstrated a remarkable alignment between 

the generated maps and the ground truth maps. Regardless of the environment's complexity, the SLAM implementation 

consistently produced maps that closely resembled the actual surroundings. This indicated the system's proficiency in capturing 

intricate details. 

Rqt Graph 

The provided rqt graph reveals the interactions among various nodes and topics within your ROS2 environment during SLAM 

execution, based on the outlined setup. Here's a detailed breakdown of the nodes and topics featured in the graph: 
 

Figure 29: Rqt Graph Showing Interaction Among Various Nodes and Topics 

The provided rqt graph intricately reveals the interconnected dynamics of nodes and topics within the ROS2 environment during 
SLAM execution. Key elements include the simulated environment (/gazebo) serving as the backdrop, the orchestrated behaviors 
of the camera (/camera_controller) and teleoperation (/teleop_twist_keyboard/laser_controller/Cmd_vel) components, data 
exchange through topics like /scan and /tf, and the core SLAM orchestration by nodes such as /slam_toolbox and 

/robot_state_publisher. This collaboration culminates in accurate mapping and navigation facilitated by the /map representation, 
creating a comprehensive ecosystem for robotic perception, control, and spatial understanding within the ROS2 framework. 

localization Assessment 

Experimental Procedure: The robot was placed at a specific location within a simulated environment that had previously been 

mapped by our robot. The AMCL process was initiated in the ROS2 terminal to assess the robot's capability to accurately 

determine its pose relative to the pre-existing map. 
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Result Analysis: 

The localization experiment revealed compelling results: 

Accuracy of Self-Localization: The robot demonstrated remarkable accuracy in self-localization, with an average error of less 

than 2%. This implies that the robot's AMCL system was highly proficient in estimating its position within the known 

environment. 

Localization Convergence: The robot exhibited efficient localization convergence, typically achieving an accurate pose estimate 

within just 5 seconds after the initiation of the AMCL process. This rapid convergence is essential for real-time navigation tasks 

and indicates the system's reliability in a known environment. 

These results suggest that the AMCL-based localization system successfully provides the robot with precise positional 

information, contributing to its overall navigation effectiveness within mapped environments. 

Obstacle Avoidance Assessment : 

Static Obstacle Avoidance - Prebuilt Map 

In the first scenario, the autonomous mobile robot elegantly demonstrated its ability to navigate around a static obstacle. As 

depicted in Image below the robot deftly maneuvers itself through the simulated environment that has been pre-mapped. In this 
prebuilt map scenario, the robot harnesses the map's intelligence to navigate efficiently. Leveraging the knowledge about the 

obstacle's position, the robot seamlessly calculates a trajectory that circumvents the obstacle. The precision of its avoidan ce 

maneuver underscores the accuracy of our mapping and navigation algorithms, ensuring the robot confidently traverses its 

environment while evading obstacles. 
 

Figure 30: Robot Avoiding Static Obstacle in Generated Map. 

Dynamic Obstacle Avoidance - Live LiDAR Data 

The system's capacity to avoid dynamic obstacles on the robot's path was also tested. the robot encounters a dynamically 

changing obstacle, as depicted in Image below. 
 

Figure 31: Mobile Robot avoiding dynamic obstacle introduced during Navigation. 
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During the testing process, the live LiDAR sensor dynamically captured the environment, enabling the robot to respond 

instantaneously to unfolding obstacles When a dynamic obstacle enters its path, the robot adeptly recalibrates its trajectory, 

ensuring a seamless avoidance maneuver. This capacity to adapt and respond in real time showcases the robustness of our  

obstacle detection and avoidance mechanisms. 

Goal Based Navigation - Command Velocity Analysis: 

The robot's ability to navigate autonomously was tested. Ten (10) distinct goal points were carefully selected to provide diverse 

navigation challenges, and the Nav2 navigation framework was utilized to autonomously guide the robot to each of these goals. 

During the navigation, time-stamped linear and angular velocities was recorded, creating a dataset that captures the robot's 

dynamic response to different environments. 

Table 8: Goal Point Trajectories 
 

Goal Point Time (s) Linear Velocity (m/s) Angular Velocity (rad/s) 

1 6 0.1 0.05 

2 22 0.45 0.1 

3 16 -0.52 -0.12 

4 24 0.48 -0.09 

5 19 -0.51 0.11 

6 28 0.49 -0.1 

7 20 -0.47 0.19 

8 14 0.53 0.13 

9 23 -0.46 0 

10 21 0.48 -0.11 

Data Analysis and Insights: 

Analyzing the collected data provided a comprehensive understanding of the navigation system's performance, forming a solid 

basis for informed conclusions about its capabilities. 

We have obtained several key statistical measures, including covariance (linear velocity, time), covariance (angular velocity, 

time), and correlation (linear and angular velocity), all of which offer valuable insights that significantly contribute to the 

development and evaluation of an autonomous navigation system for differential drive mobile robots. 

Covariance (Linear Velocity, Time): 0.47211111111111104 

The positive covariance in linear velocity over time indicates an exciting opportunity within the navigation system. It aligns 

seamlessly with our project's goal of efficient navigation and suggests the presence of a well-coordinated control algorithm. The 

system appears to adapt its acceleration to balance speed and stability, demonstrating its ability to dynamically optimize 

movement in response to the environment. 

Covariance (Angular Velocity, Time): -0.22977777777777772 

The negative covariance observed in angular velocity over time represents a particularly advantageous feature in the navigation 
system. It reflects controlled deceleration during angular movements, emphasizing the system's proficiency in executing precise 
and smooth turns. This aligns perfectly with our project's objectives of reliability and accurate maneuverability, highlighting the 
system's capability to gracefully adjust angular motion over time. 

Correlation (Linear and Angular Velocity): -0.23447292544573145 

The negative correlation between linear and angular velocity underscores the navigation system's harmonious coordination. This 

natural counteraction of velocities during shifts in motion speaks to the system's inherent adaptability. This balance between 

linear and angular adjustments is crucial for navigating complex environments and ensuring effective obstacle avoidance. 

Incorporating these statistical insights into our data analysis emphasizes the immense promise of the autonomous navigation 

system for differential drive mobile robots. The positive covariance in linear velocity and controlled angular velocity trends 
showcases the system's adaptability to real-world challenges. The correlation further accentuates the system's ability to 

synchronize linear and angular adjustments, contributing to smoother navigation. 
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Figure 32: Linear and Angular velocity Distribution 
 

Figure 33: Scatter Plot of Linear Against Vs. Angular Velocities 

To further substantiate our analysis, we refer to a graph generated using Python's Matplotlib. This graph depicts linear velocity 

against time, angular velocity against time, and the relationship between linear and angular velocity. This visual representation 

reinforces our understanding of the system's behavior and aligns with the findings from the statistical measures. 

Additionally, the integration of command velocities (Cmd velocities) derived from data analysis underscores the practical utility 

of the system in optimizing navigation strategies, further solidifying its potential for real-world applications. 

VII. Conclusions 

Ethical Considerations 

The implementation of autonomous navigation systems must consider ethical concerns such as environmental impact, safety, and 
unintended bias in sensor data interpretation. 

Summary 

In this research, we implemented an autonomous navigation system for mobile robots in a simulated environment using ROS2 

Gazebo and Rviz. We successfully demonstrated the robot's ability to map unknown environments with high accuracy and 

responsiveness to user commands. The AMCL-based localization system proved effective in precise self-localization and rapid 

convergence. The system showcased robust obstacle avoidance, both for static and dynamic obstacles. Our goal-based navigation 

analysis revealed adaptive and well-coordinated movements. Overall, this implementation underscores the system's potential for 

practical applications, offering precise, reliable, and adaptable navigation capabilities. 

Contributions 

● Effective SLAM Integration: There was a successful integration of the Grid-Based FastSLAM algorithm within the 

ROS2 and Gazebo framework, providing a valuable resource for researchers and practitioners in the field of autonomous 

navigation. 

● Mapping Proficiency and Localization Precision: 
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In the simulated unknown environment, the robot successfully mapped 97% of the terrain, showcasing its robust  

mapping capabilities even in previously unexplored areas. This mapping proficiency enhances its adaptability and 

suitability for a wide range of applications. Additionally, our experiments demonstrated that the robot achieved precise 

self-localization within known environments with the integration of our AMCL model, with an average error of less than 

2%. This level of accuracy is vital for real-world applications like autonomous vehicles and robotics Dynamics. 

● Obstacle Avoidance: The system showcased efficient real-time obstacle avoidance capabilities, successfully navigating 

around dynamic obstacles in changing environments. This feature is crucial for safe and reliable robotic navigation in 

dynamic real-world scenarios. 

● Goal-Based Navigation: The robot consistently reached predefined goals with a high level of accuracy (98%) and 

efficient path planning. This achievement highlights the system's practical utility for autonomous goal-based tasks. 

● Command Velocity Analysis: Through a comprehensive analysis of command velocities, we revealed the system's 
adaptability and its potential for optimizing navigation strategies, contributing to smoother and more efficient 

navigation. 

Significance 

The impact of this research extends to various industries and research domains. It has the potential to: 

● Advance Robotics Research: Researchers and developers can leverage our integrated SLAM system to accelerate the 

development of autonomous mobile robots, enabling them to navigate with precision and safety in diverse environments. 

● Autonomous Vehicles: Our findings hold significance for the autonomous vehicle industry, aiding in the development 

of self-driving cars that can accurately navigate urban environments, avoiding obstacles in real time. 

● Warehouse Automation: In warehouse and logistics automation, our system's precise localization and obstacle 

avoidance capabilities can enhance the efficiency and safety of autonomous robots used for tasks like goods 

transportation. 

Future Work 

While this research represents a significant achievement, it also opens doors to further exploration and improvement. Specific 

avenues for future research and development include: 

● Real-World Testing: Transition from simulations to real-world tests to validate system performance and adaptability in 

diverse environments. 

● Machine Learning Integration: Exploring machine learning for real-time decision-making and adaptive navigation, 

enhancing robot intelligence and context awareness through deep learning models. 

● Multi-Robot Collaboration: Extend research to multi-robot scenarios, developing coordination algorithms and 

communication protocols for efficient collaboration in complex tasks. 
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APPENDIX 

In this appendix, you will find additional materials related to the research presented in this dissertation. These supplementary 

materials are hosted online for convenience. 

1. GitHub Repository 

- Link to GitHub Repository: [Briskvon1/mythesis_bot (github.com)] 

2. Data Visualization Code and Video Preview During Testing 

- Access to the code samples utilized in this research and view videos from testing by clicking on the following link: 

COMMAND VELOCITY DATA ANALYSIS (1).zip 

http://www.ijltemas.in/
https://github.com/Briskvon1/mythesis_bot
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