INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIV, Issue I, January 2025
www.ijltemas.in Page 215
Rattan cane (Calamus longippina), a natural fiber, can be combined with an LDPE polymer matrix to modify mechanical
properties in both untreated and treated forms. Treated composites exhibited superior mechanical properties compared to
untreated ones. The strong positive correlation between the datasets suggests that the properties of untreated and treated
composites are closely related and increase almost in sync with rising filler weight.
Conflict of interest
The authors do not have any form of conflict of interest in this work.
Acknowledgement
The authors are grateful tho the Niger Delta University for providing the laboratory space for this work.
References
1. Ansari, M.N.M & Ismail, H. (2009). Effect of compatibiliser on mechanical properties of feldspar & polypropylene
composites. Polym. Plast. Technology. 48(12).1295-1303
2. Ansari, S.A, Paul, E., Sommer, S. & Lieleg, C. (2016). Mediator, TATA-binding protein, and RNA polymerase II
contribute to low histone occupancy at active gene promoters in yeast. Journal of Biological Chemistry, 291(19), 9938.
3. Weinstock, J.A. (1983). Rattan: Ecological balance in a borneo rainforest Swidden. Economic Botany, 37(1) 56-68
4. Ismail, H., Muniandy, K. & Othman, N. (2012). Fatigue life, morphological studies, and thermal aging of rattan
powder-filled natural rubber composites as a function of filler loading and a silane coupling agent. BioResources, 7(1).
5. Muniandy, K., Ismail, H. & Othman, N. (2012). biodegradation, morpholgical, and ftir study of rattan powder-filled
natural rubber composites as a function of filler loading and a silane coupling agent. BioResources, 7(1).
6. Oladele, I. O. & Okoro, M. A. (2015). Development of rattan (Calamus longipinna) particulate reinforced paper pulp-
based composite for structural application using waste papers. Leonardo Journal of Science, 14(27), 75-87
7. Zaini, M. J., Fuad, M. A., Ismail, Z., Mansor, M. S. & Mustafah, J. (1996). The effect of filler content and size on the
mechanical properties of polypropylene/oil palm wood flour composites. Polymer International, 40(1), 51-55.
8. Tajvidi, M. & Ebrahimi, G. (2003). Water uptake and mechanical characteristics of natural filler–polypropylene
composites. Journal of Applied Polymer Science, 88(4), 941-946.
9. Obasi H.C. & Onuegbu G. C. (2013). Biodegradability and mechanical properties of low density polyethylene/waste
maize cob flour blends. International journal of Applied science and Engineering Research, 2, (3) 242-249.
10. Bikiaris, D. & Panayiotu, C. (1998). LDPE/Starch blends compatibilized with PE-g-MA copolymers. Journal of Applied
polymer science, 70, 1501-1521.
11. John and Thomas(2008)
12. Demir H., Atikler U., Balkose D. & Tihminlioglu, F. (2016). The effect of fibre surface treatment on the tensile and
water sorption properties of polypropylene-luffa fibre composites. Composites part A: Applied science and
manufacturing, 37(3) 447-456.
13. Yang, H. S., Kim, H. J., Park, H. J., Lee, B. J. & Hwang, T. S. (2006). Water absorption behavior and mechanical
properties of lignocellulosic filler–polyolefin bio-composites. Composite structures, 72(4), 429-437.
14. Wahab, R., Sulaiman, O., Mustafa, M. T., Sidek, S., & Mat Rasat, M. S (2016). Rattan: Propagation, Properties and
Utilization. UMK Press.
15. Mwaikambo, L. Y., & Ansell, M. P. (2002). Chemical modification of hemp, sisal, jute, and kapok fibers by
alkalization. Journal of applied polymer science, 84(12), 2222-2234.