INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIV, Issue III, March 2025
www.ijltemas.in Page 163
3. Angarano, S., Martini, M., Navone, A., and Chiaberge, M. (2023). Domain generalization for crop segmentation with
standardized ensemble knowledge distillation. arXiv preprint. https://arxiv.org/abs/
4. García, A., Martín, D., and de la Cruz, J. M. (2023). Artificial intelligence applied to drone control: A state of the art.
Drones, 8(7), 296. https://doi.org/10.3390/drones8070296
5. Guebsi, R.; Mami, S.; Chokmani, K. Drones in Precision Agriculture: A Comprehensive Review of Applications,
Technologies, and Challenges. Drones 2024, 8, 686. https://doi.org/10.3390/drones8110686
6. Fei, S., Hassan, M. A., Xiao, Y., Su, X., Chen, Z., Qian, C., Duan, F., Chen, R., and Ma, Y. (2022). UAV-based multi-
sensor data fusion and machine learning algorithm for yield prediction in wheat. Precision Agriculture, 24(1), 45–66.
https://doi.org/10.1007/s11119-022-09938-8
7. Food and Agriculture Organisation (2009). Global Agriculture Towards 2050. [Online]. Accessed on 19 February 2025,
from https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf
8. Kumar, H., and Sriram, A. (2023). An overview of drones in agriculture (FS-2024-0705). University of Maryland
Extension. Retrieved from https://extension.umd.edu/resource/overview-drones-agriculture-fs-2024-0705
9. Maimaitijiang, M., Sagan, V., Sidike, P., Hartling, S., Esposito, F., and Fritschi, F. B. (2020). Soybean yield prediction
from UAV using multimodal data fusion and deep learning. Remote Sensing of Environment, 237, 111599.
https://doi.org/10.1016/j.rse.2019.111599
10. Manoj, S., Paschapur, A., Manideep, S. and Tulasi, B. (2024). Precision Farming Solutions: Integrating Technology for
Sustainable Pest Management. Journal of Advances in Biology and Biotechnology, vol. 27, iss. 8,
DOI:10.9734/jabb/2024/v27i81119
11. Moghimi, A., Yang, C., and Anderson, J. A. (2019). Aerial hyperspectral imagery and deep neural networks for high-
throughput yield phenotyping in wheat. arXiv preprint arXiv:1906.09666. https://arxiv.org/abs/1906.09666
12. Nwamekwe, C. O. and Okpala, C. C. (2025). Machine Learning-Augmented Digital Twin Systems for Predictive
Maintenance in High-Speed Rail Networks. International Journal of Multidisciplinary Research and Growth Evaluation,
vol. 6, iss. 1, https://www.allmultidisciplinaryjournal.com/uploads/archives/ 20250212104201_MGE-2025-1-306.1.pdf
13. Nwamekwe, C. O., Okpala, C. C. and Okpala, S. C. (2024). Machine Learning-Based Prediction Algorithms for the
Mitigation of Maternal and Fetal Mortality in the Nigerian Tertiary Hospitals. International Journal of Engineering
Inventions, vol. 13, iss. 7, http://www.ijeijournal.com/papers/Vol13-Issue7/1307132138.pdf
14. Oghaz, M. M., Razaak, M., Kerdegari, H., Argyriou, V., and Remagnino, P. (2019). Scene and environment monitoring
using aerial imagery and deep learning. arXiv preprint arXiv:1906.02809. https://arxiv.org/abs/1906.02809
15. Okpala, C. C., Udu, C. E. and Nwamekwe, C. O. (2025). Artificial Intelligence-Driven Total Productive Maintenance:
The Future of Maintenance in Smart Factories. International Journal of Engineering Research and Development, vol. 21,
iss. 1, https://ijerd.com/paper/vol21-issue1/21016874.pdf
16. Okpala, C. C. and Udu, C. E. (2025). Artificial Intelligence Applications for Customized Products Design in
Manufacturing. International Journal of Multidisciplinary Research and Growth Evaluation, vol. 6, iss. 1,
https://www.allmultidisciplinaryjournal.com/uploads/archives/20250212104938_MGE-2025-1-307.1.pdf
17. Okpala, S. C. and Okpala, C. C. (2024). The Application of Artificial Intelligence to Digital Healthcare in the Nigerian
Tertiary Hospitals: Mitigating the Challenges. Journal of Engineering Research and Development, 20 (4),
http://ijerd.com/paper/vol20-issue4/20047681.pdf
18. Okpala, C. C., Igbokwe, N. C. and Nwankwo, C. O. (2023). Revolutionizing Manufacturing: Harnessing the Power of
Artificial Intelligence for Enhanced Efficiency and Innovation. International Journal of Engineering Research and
Development, vol. 19, iss. 6, http://www.ijerd.com/paper/vol19-issue6/C19061825.pdf
19. Shotwell, B. (2024). Drones Now Serve as Agriculture’s Eyes in the Sky. [Online]. Accessed on 12 February 2025, from
https://microspace.com/drones-now-serve-as-agricultures-eyes-in-the-sky/
20. Tsouros, D. C., Bibi, S., and Sarigiannidis, P. G. (2022). Drones in agriculture: A review and bibliometric analysis.
Computers and Electronics in Agriculture, 198, 107017. https://doi.org/10.1016/j.compag.2022.107017
21. Wen, P., He, J., Ning, F., Wang, R., Zhang, Y. and Li, J. (2019). Estimating leaf nitrogen concentration considering
unsynchronized maize growth stages with canopy hyperspectral technique. Ecological Indicators, vol. 107,
https://doi.org/10.1016/j.ecolind.2019.105590.