INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIV, Issue IV, April 2025
www.ijltemas.in Page 188
23. Han, J., Kamber, M., and Pei, J. (2011). Data Mining: Concepts and Techniques. Morgan Kaufmann.
24. Hoberman, S. (2020). Data Modeling Made Simple: A Practical Guide for Business and IT Professionals. Technics
Publications.
25. Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). Automated Machine Learning: Methods, Systems, Challenges.
Springer.
26. IBM. (2020). "The Role of Data Modeling in AI and Machine Learning."
27. IBM. (2021). AI governance framework. https://www.ibm.com/artificial-intelligence/governance
28. Inmon, W. H., and Linstedt, D. (2019). Data Architecture: A Primer for the Data Scientist. Morgan Kaufmann.
29. Jolliffe, I. T., and Cadima, J. (2016). "Principal Component Analysis: A Review and Recent Developments." Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202.
30. Jordan, M. I., and Mitchell, T. M. (2015). "Machine Learning: Trends, Perspectives, and Prospects." Science, 349(6245),
255–260.
31. Kairouz, P., et al. (2021). "Advances and Open Problems in Federated Learning." Foundations and Trends in Machine
Learning, 14(1–2), 1–210.
32. Kanter, J. M., and Veeramachaneni, K. (2015). "Deep Feature Synthesis: Towards Automating Data Science Endeavors."
IEEE International Conference on Data Science and Advanced Analytics (DSAA).
33. Kimball, R., & Ross, M. (2013). The data warehouse toolkit: The definitive guide to dimensional modeling (3rd ed.).
Wiley.
34. Kohavi, R., and Provost, F. (1998). "Glossary of Terms." Machine Learning, 30(2–3), 271–274.
35. Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). "ImageNet Classification with Deep Convolutional Neural
Networks." Advances in Neural Information Processing Systems (NeurIPS).
36. LeCun, Y., Bengio, Y., and Hinton, G. (2015). "Deep Learning." Nature, 521(7553), 436–444.
37. Leskovec, J., Lang, K. J., Dasgupta, A., and Mahoney, M. W. (2010). "Community Structure in Large Networks: Natural
Cluster Sizes and the Absence of Large Well-Defined Clusters." Internet Mathematics, 6(1), 29–123.
38. Lundberg, S. M., and Lee, S. I. (2017). "A Unified Approach to Interpreting Model Predictions." Advances in Neural
Information Processing Systems (NeurIPS).
39. Manyika, J., Chui, M., Brown, B., et al. (2011). "Big Data: The Next Frontier for Innovation, Competition, and
Productivity." McKinsey Global Institute.
40. McInnes, L., Healy, J., and Melville, J. (2018). "UMAP: Uniform Manifold Approximation and Projection for Dimension
Reduction." arXiv preprint arXiv:1802.03426
41. McKinsey and Company. (2021). "The AI Frontier: Modeling the Impact of AI on the World Economy." Mehrabi, N., et
al. (2021). Bias in AI. ACM Computing Surveys.
42. Mitchell, M., Wu, S., Zaldivar, A., et al. (2019). Model cards for model reporting. Proceedings of the Conference on
Fairness, Accountability, and Transparency, 220-229.
43. Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). "Human-Level Control Through Deep Reinforcement Learning."
Nature, 518(7540), 529–533.
44. Molnar, C. (2022). Interpretable Machine Learning: A Guide for Making Black Box Models Explainable.
45. Müllner, D. (2011). "Modern Hierarchical, Agglomerative Clustering Algorithms." arXiv preprint arXiv:1109.2378.
46. Murphy, K. P. (2022). Probabilistic Machine Learning: An Introduction. MIT Press.
47. Obermeyer, Z., et al. (2019). Dissecting racial bias. Science.
48. Provost, F., & Fawcett, T. (2013). Data science for business: What you need to know about data mining and data-analytic
thinking. O'Reilly Media, Inc.
49. Raghavan, M., Barocas, S., Kleinberg, J., & Levy, K. (2020). Mitigating bias in algorithmic hiring. Proceedings of the
2020 Conference on Fairness, Accountability, and Transparency.
50. Rajkomar, A., Hardt, M., Howell, M. D., et al. (2018). Ensuring fairness in machine learning to advance health
equity. Annals of Internal Medicine, 169(12), 866-872.
51. Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). "Why Should I Trust You? Explaining the Predictions of Any
Classifier." Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
52. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2009). The graph neural network model. IEEE
transactions on neural networks, 20(1), 61-80.
53. Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). "Trust Region Policy Optimization." Proceedings
of the 32nd International Conference on Machine Learning (ICML), 37, 1889–1897.
54. Sculley, D., Holt, G., Golovin, D., et al. (2015). Hidden technical debt in machine learning systems. Advances in Neural
Information Processing Systems, 28.
55. Shalev-Shwartz, S., and Ben-David, S. (2014). Understanding Machine Learning: From Theory to Algorithms. Cambridge
University Press.
56. Shi, W., Cao, J., Zhang, Q., et al. (2016). "Edge Computing: Vision and Challenges." IEEE Internet of Things Journal,
3(5), 637–646.
57. Stanford HAI. (2023). AI index report 2023. https://hai.stanford.edu/research/ai-index
58. Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press.
59. Sweeney, L. (2013). "Discrimination in Online Ad Delivery." Communications of the ACM, 56(5), 44–54.