INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue V, May 2024
www.ijltemas.in Page 128
14. S. H. Ahammad et al., “Phishing URL detection using machine learning methods,” Advances in Engineering Software,
vol. 173, p. 103288, Nov. 2022, doi: https://doi.org/10.1016/j.advengsoft.2022.103288.
15. N. Azeez, S. Misra, I. A. Margaret, L. Fernandez-Sanz, and S. M. Abdulhamid, “Adopting Automated Whitelist
Approach for Detecting Phishing Attacks,” Computers & Security, p. 102328, May 2021, doi:
https://doi.org/10.1016/j.cose.2021.102328.
16. G. Harinahalli Lokesh and G. BoreGowda, “Phishing website detection based on effective machine learning approach,”
Journal of Cyber Security Technology, pp. 1–14, Aug. 2020, doi: https://doi.org/10.1080/23742917.2020.1813396.
17. M. Bahaghighat, M. Ghasemi, and F. Ozen, “A high-accuracy phishing website detection method based on machine
learning,” Journal of Information Security and Applications, vol. 77, p. 103553, Sep. 2023, doi:
https://doi.org/10.1016/j.jisa.2023.103553.
18. R. Hoheisel, G. van Capelleveen, D. K. Sarmah, and M. Junger, “The development of phishing during the COVID-19
pandemic: An analysis of over 1100 targeted domains,” Computers & Security, vol. 128, p. 103158, May 2023, doi:
https://doi.org/10.1016/j.cose.2023.103158.
19. T. O. Ojewumi, G. O. Ogunleye, B. O. Oguntunde, O. Folorunsho, S. G. Fashoto, and N. Ogbu, “Performance
evaluation of machine learning tools for detection of phishing attacks on web pages,” Scientific African, vol. 16, p.
e01165, Jul. 2022, doi: https://doi.org/10.1016/j.sciaf.2022.e01165.
20. C. Pham, L. A. T. Nguyen, N. H. Tran, E.-N. Huh, and C. S. Hong, “Phishing-Aware: A Neuro-Fuzzy Approach for
Anti-Phishing on Fog Networks,” IEEE Transactions on Network and Service Management, vol. 15, no. 3, pp. 1076–
1089, Sep. 2018, doi: https://doi.org/10.1109/tnsm.2018.2831197.
21. J. Yu, J. Li, Y. Liand Y. Wang, “A comparative study of machine learning techniques for phishing website detection”,
Journal of Network and Computer Applications, vol. 235, p. 107238, Dec. 2023.
22. E. Budu, “Bagging, Boosting, and Stacking in Machine Learning”, Dec. 2023, [Online]. Available:
https://www.baeldung.com/cs/bagging-boosting-stacking-ml-ensemble-models
23. X. Zhang and Z. Zhou, “On the drawbacks of stacking ensemble learning”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 45, no. 7, pp. 1610–1622, Dec. 2023, [Online]. Available:
https://link.springer.com/article/10.1007/s10639-023-11682-z
24. J. Li, Y. Dengand Z. Tang, “Stacking ensemble learning: A critical review and comparative study”, Journal of Machine
Learning Research, vol. 24, no. 224, pp. 1–33, Dec. 2023, [Online]. Available: https://arxiv.org/abs/1407.1537
25. S. Atawneh and H. Aljehani, “Phishing Email Detection Model Using Deep Learning,” Electronics, vol. 12, no. 20, p.
4261, Jan. 2023, doi: https://doi.org/10.3390/electronics12204261.
26. K. Joshi, C. Bhatt, K. Shah, D. Parmar, J. M. Corchado, A. Bruno, P. L. Mazzeo, “Machine-Learning Techniques for
Predicting Phishing Attacks in Blockchain Networks: A Comparative Study,” Algorithms, vol. 16, no. 8, pp. 366–366,
Jul. 2023, doi: https://doi.org/10.3390/a16080366.
27. O. Ayoub, N. Di Cicco, F. Ezzeddine, F. Bruschetta, R. Rubino, M. Nardecchia, M. Milano, F. Musumeci, C. Passera,
M. Tornatore, Explainable artificial intelligence in communication networks: a use case for failure identification in
microwave networks, Comput. Netw. 219 (2022) 109466, https://doi.org/10.1016/j.comnet.2022.109466.
28. Z. C. Lipton, “The Mythos of Model Interpretability,” Queue, vol. 16, no. 3, pp. 31–57, Jun. 2018, doi:
https://doi.org/10.1145/3236386.3241340.
29. M. Benk and A. Ferrario, “Explaining Interpretable Machine Learning: Theory, Methods and Applications,” SSRN
Electronic Journal, 2020, Published, doi: 10.2139/ssrn.3748268.
30. G. Varshney, R. Kumawat, V. Varadharajan, U. Tupakula, and C. Gupta, “Anti-phishing: A comprehensive
perspective,” Expert Systems with Applications, vol. 238, p. 122199, Mar. 2024, doi:
https://doi.org/10.1016/j.eswa.2023.122199.
31. P. N. Mangumt and K. A. Datukun, “The ever-changing face of phishing”, World Journal of Innovative Research, vol.
10, no. 1, pp. 34–44, Dec. 2021.
32. M. Boddy, “Phishing 2.0: the new evolution in cybercrime”, vol. 50, no. 10, pp. 8–13, Dec. 2018.
33. T. Xu, K. Singh, and P. Rajivan, “Personalized persuasion: Quantifying susceptibility to information exploitation in
spear-phishing attacks,” Applied Ergonomics, vol. 108, p. 103908, Apr. 2023, doi:
https://doi.org/10.1016/j.apergo.2022.103908.
34. E. Tessian, “Tessian Spear-Phishing Threat Landscape 2021”, Computer Fraud & Security, vol. 50, no. 10, pp. 8–13,
Dec. 2021.
35. O. A. Fadare and M. A. Zahurin, “Modelling the phishing avoidance behaviour among internet banking users in Nigeria:
The initial investigation”, IAEME Journal of Computer Engineering and Technology, vol. 4, no. 1, pp. 1–17, Dec. 2020.
36. M. S. Kim and J. H. Kim, “Identifying user behavioral patterns in internet banking using deep learning-based sequential
modeling”, Journal of Information Processing Systems, vol. 19, no. 2, pp. 309–320, Dec. 2023.
37. A. O. Ayodeji and E. A. Adeniyi, “Religion and Sustainable Development in Nigeria: Issues and Prospects”, Journal of
Sustainable Development in Africa, vol. 19, no. 11, pp. 33–48, Dec. 2017.
38. A. Valente, M. Holanda, A. M. Mariano, R. Furutaand D. Da Silva, “Analysis of Academic Databases for Literature
Review in the Computer Science Education Field”, IEEE Frontiers in Education Conference (FIE), pp. 1–7, Dec. 2022.
39. G. Burkhardt, F. Boy, D. Doneddu, and N. Hajli, “Privacy Behaviour: A Model for Online Informed Consent,” Journal
of Business Ethics, vol. 186, no. 1, pp. 237–255, Jul. 2022, doi: 10.1007/s10551-022-05202-1.