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Abstract: This paper seeks ways to improve spectral efficiency (or throughput) while mitigating multi-user interferences for 

large-scale antenna arrays, massive multiple input multiple output (mMIMO) systems via the use of the minimum mean squared 

error (MMSE) precoding schemes. The impact of the power at the user equipment (UEs) being adjusted to meet the transmission 

power constraint of the BS otherwise known as power normalization on the performance of the single and multi-cell MMSE 
precoders (S-MMSE and M-MMSE) was studied. The choice of power normalization (matrix normalization or vector 

normalization) and how they can impact worse or better performances on S-MMSE and M-MMSE under three different channel 

estimates with respect to varying pilot reuse factors were simulated and analyzed. We considered a downlink mMIMO network 

model that accounts for the number of antennas and single-antenna UEs. Numerical results obtained after simulations depict that 

M-MMSE with vector normalization (VN) out-performs S-MMSE with vector/matrix normalization and M-MMSE with matrix 

normalization (MN) by having the highest average sum SE, throughput, and signal-to-interference plus noise ratio (SINR/SNR) 

for any number of antennas and UEs in the three-channel estimators. LS channel estimator performs the least when compared to 

EW-MMSE and MMSE channel estimators.  

Keywords: power normalization, matrix normalization, vector normalization, S-MMSE, M-MMSE 

I.  Introduction 

The massive multi-input multi-output (m MIMO) network is an extended MIMO wireless communication technology that serves 

several mobile users or users equipment (UEs) simultaneously in the same frequency-time resource [1]. MIMO networks are an 

integral component of present wireless networks, and in recent years they have been used widely to achieve high spectral 

efficiency (SE) and data throughput. Before the inception of MIMO, single-input-single-output (SISO) network were mostly 
used, which had very low SE and throughput and could not serve a large number of UEs with high reliability. To accommodate 

this huge demand for data traffic, various new MIMO technology like single-user MIMO (SU-MIMO), multi-user MIMO (MU-

MIMO), and distributed MIMO were introduced and developed. However, these new technologies are also not enough to 

accommodate the ever-increasing data traffic. The wireless UEs have increased drastically in the last few years, and these UEs 

produce trillions of data that must be handled efficiently with more reliability. The current MIMO technologies associated with 

4G/LTE network is unable to handle this large influx in data traffic with more speed and reliability. Therefore, the 5G and next-

generation networks have considered m MIMO technology as a key enabling technology needed to overcome the challenges 

created by large-scale data traffic and UEs [1, 15]. 

In m MIMO, precoding is a signal processing technique that is required to direct transmitted signals towards the UEs. Precoding 

is usually performed at the base station (BS) before signal transmission in order to mitigate the impact of pilot contamination [2-

3]. Linear precoding has a critical role in m MIMO 

and the basic linear precoding schemes are the maximum ratio (MR), zero-forcing (ZF), regularized zero-forcing (RZF), single-
cell minimum mean squared error (S-MMSE), and multi-cell minimum mean squared error (M-MMSE). The main objective of 

precoding in m MIMO systems is to improve the gain of the large-scale antenna array and mitigate the impact of multiuser 

interference [4]. In order to utilize basic linear precoding, it is required that the power at the UEs be adjusted to meet the 

transmission power constraint of the BS and this is known as precoding power normalization [5, 11]. Power normalization is 

categorized into two major techniques: vector normalization (VN) and matrix normalization (MN) [5-12]. MN assigns different 

powers to UEs and applies the same precoding weight to UEs by normalizing over all UEs (𝔼 {
𝑭

||𝑭||𝑭
}). In contrast, VN assigns 

same power to UEs and generates different precoding weight for each UE separately (𝔼 {
𝒇

‖𝒇‖
}), which results in different 

throughput among UEs [12]. 

The selection of the precoding weight, 𝑭 in MN will determine how the transmit power is allocated between the different UEs. 
Hence, power allocation is determined by the precoders. For instance, MR allocates less power to UEs with weak channels than 

UEs with strong channels, while ZF does the opposite. Hence, if one tries to compare MR and ZF under MN, the different power 
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allocations will have strong leverage on the results [5-12]. The aforementioned problem was resolved with VN and VN method is 

employed more often in the literature than MN. With VN, power allocation is not determined by the precoders. However, the 

main problem with VN is the same power 𝑷 is allocated to the UEs, K (𝔼 {√
𝑷

𝑲
}), which is undesirable if some UEs have weak 

channels and others have strong channels. A conscious decision therefore should be made when it comes to power normalization 

and precoders between UEs. In this paper, we consider the MMSE precoders with power normalization.  

A. Related works 

The performance analysis of linear precoding techniques for downlink transmissions in single-cell m MIMO Systems was done in 

[6 - 8] using power normalization. The tested linear precoding techniques considered in [6] were ZF, MR, RZF and the truncated 

polynomial expansion (TPE), while MR and ZF were considered in [7] and [8]. The results analyzed show that power 

normalization for MR gives good performance at low downlink transmission power while ZF produces good performance at high 

downlink transmission power. Studies on how vector normalization (VN) and matrix normalization (MN) techniques affect the 

performance of MR, ZF, and RZF precoding in multi-cell m MIMO were presented in [5] and [9-11], respectively. The results 

show that VN largely outperforms MN for MR, ZF, and RZF. An analysis done in [9] and [10] aims to determine the performance 

of m MIMO for cell-boundary users. Presented results show that for the downlink, VN is better for ZF while MN is better for MR 

at low signal-to-noise-ratio (SNR) regardless of number of cell-boundary UEs. In contrast, for the uplink, MR should be used 

instead of ZF at low SNR. In [5], the authors showed that MN and VN treat the noise and interference in the same manner, but 

have different effects on pilot contamination and received signal power. This implies that in massive MIMO, non-coherent 
interference and noise, rather than pilot contamination, are often the major limiting factors of considered precoding schemes. In 

[11], a validated asymptotic analysis for different values of the number of antennas (M) and UEs (K) was investigated. The 

results showed that the number of antennas required to achieve a target sum rate with VN is smaller than the one required by MN 

by a factor of 3 or 4. In [12], the authors researched on the impact of the power normalization in MU-MIMO. Quality indexes 

such as system capacity and fairness were presented while considering user scheduling. Simulation results show that VN limits 

the fairness index (FI), while performing better than MN in system capacity. However, although the MN falls behind VN in terms 

of the system capacity, MN has superiority in fairness. Therefore, VN is effective in the relatively low FI. MN is appropriate for 

improving the FI while losing a certain amount of system capacity. 

The above related works considered power normalization on single-cell precoding schemes such as MR, ZF, and RZF in the m 

MIMO networks.  The effect of power normalization on multi-cell precoding scheme has not been thoroughly investigated yet. 

However, a detailed treatment of the impact of power normalization on multi-cell precoder does not exist in the literature. The 

aim of this paper is to fulfill this research gap by investigating the effect of power normalization on MMSE precoding schemes 
such as S-MMSE and M-MMSE with reference to the pilot reuse factor, correlation channels, SNR/SINR as well as the number 

of antennas and UEs in massive MIMO Networks. The MMSE precoding schemes have an acceptable performance required to 

mitigate intra-cell and multi-cell interference [13-14, 20]. The main contributions of this work are: 

 To elaborate and analyze power normalization techniques using MMSE precoding schemes. 

 To show how the choice of power normalization affects the performance of S-MMSE and M-MMSE under different 

channel estimates with respect to the pilot reuse factor. 

II. System Model and Power Normalization Techniques 

We consider the downlink of a m MIMO cellular network with multi-cell network of up to 16 cells. The BS of each cell has M 

antennas and serves K single-antenna UEs in the same time-frequency resource. The system model for downlink (DL) may be 

determined as given in [15]: 

𝑦𝑗𝑘 =  ∑(ℎ𝑗𝑘
𝑗 )

𝐻
𝐿

𝑗=1

𝑠𝑗 +  𝑛𝑗𝑘                                                             (1) 

L indicates the number of cells, (.)H indicates the Hermitian transpose matrix operator and the received DL signal 𝑦𝑗𝑘  𝜖 ℂ𝑀×𝐾  at 

UE k in cell j is modeled above. ℎ𝑗𝑘
𝑗 𝜖 ℂ𝑀×𝐾  is them MIMO DL channel matrix, where ℂ denotes a complex value matrix, M is 

the number of BS antennas and it represents the number of rows in the matrix. K is the number of UEs which represents the 

number of columns in the matrix, j superscript denotes the BS’s cell index and jk subscripts denote kth UE in cell j. 

ℎ𝑗𝑘
𝑗 =  𝑁𝐶(0, 𝑅𝑗𝑘

𝑗 )                                                                                      (2) 

ℎ𝑗𝑘
𝑗
 is the correlated Rayleigh channel and 𝑅𝑗𝑘

𝑗
 𝜖 ℂ𝑀×𝑀 is the spatial correlation matrix, where j superscript represents the BS’s 

cell index and jk subscripts represent kth UE in cell j. ℎ𝑗𝑘
𝑗
is modeled by circularly symmetric complex Gaussian distribution 

having circular symmetry 𝑁𝐶with zero mean and the spatial correlation matrix. The receiver noise may be expressed as  

𝑛𝑗𝑘 =𝑁𝐶(0, 𝜎2)                                                                                                                (3) 
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Where 𝑛𝑗𝑘 represents the additive white Gaussian noise (AWGN) vector and 𝑠𝑗  is the DL transmit signal [15-16]. 

A. Downlink Channel Estimators 

For efficient usage of BS antennas, each BS is required to acquire knowledge of the channels from the UEs which are active in 

the coherence block [17]. The BS j estimates the channels knowledge from its UEs in a particular cell j. The massive MIMO 

network being considered operates according to the time division duplex (TDD) protocol. The TDD protocol which was 

discussed extensively in [13, 14] allows the downlink channel estimates to be determined from the uplink pilot signal by 

exploiting channel reciprocity. The uplink pilot signal 𝑌𝑗
𝑃received at BS j defined in [15, 17] is expressed in equation (4). 

𝑌𝑗
𝑃 =  ∑ √𝑝𝑗𝑘ℎ𝑗𝑘

𝑗

𝑘𝑗

𝑘 =1

𝜗𝑗𝑘
𝑇 +  ∑ ∑ √𝑝𝑙𝑖ℎ𝑙𝑖

𝑗

𝑘𝑙

𝑖 =1

𝜗𝑙𝑖
𝑇 +  𝑁𝑗

𝑝
            

𝐿

𝑙=1
𝑙≠𝑗

(4) 

The first part in Equation (4) denotes the desired pilots in the cell, the second part denotes the interfering pilots from other 

adjacent cells and then the third part 𝑁𝑗
𝑝
denotes the receiver noise. 

Matrix 𝑁𝑗
𝑝

 𝜖 ℂ𝑀×𝜏𝑝 contains independent identically distributed elements which follow a complex Gaussian distribution with zero 

mean and noise variance 𝜎2. 𝑝𝑗𝑘  is the deterministic uplink pilot signal and power coefficient for the pilot of user k in cell j. In the 

channel estimation phase, the aggregated received uplink pilot signals at BS j are denoted as 𝑌𝑗
𝑃  𝜖 ℂ𝑀×𝜏𝑝  where 𝜏𝑝 is the length of 

a pilot sequence (and also equals to the number of orthogonal pilot sequences available for the network. Generalized pilot reuse 

was supported by denoting the relation between 𝜏𝑝 and K using the expression 𝜏𝑝 = 𝑓𝐾, where 𝑓 is the pilot reuse factor (1, 2, 4 

or 16) [17]. The universal pilot reuse factor is f =1 while the non-universal pilot reuse factors are f = 2, 4, 16 [11]. The mutually 

orthogonal uplink pilot matrix 𝜏𝑝 was organized as columns at BS j, 𝜗𝑗 = [𝜗𝑗1, 𝜗𝑗2, 𝜗𝑗3, … , 𝜗𝑗𝑘]𝜖 ℂ𝜏𝑝 ×  𝐾 which were transmitted 

by the kth UE of the cell j. All pilot sequences are assumed to originate from a predefined orthogonal pilot book in which 

sequence 𝜗𝑙𝑖
𝑇  𝜖 ℂ𝜏𝑝  was defined [15, 17] and expressed in equations (5a) to equation (6): 

BS j correlates  𝑌𝑗
𝑃 with 𝜗𝑗𝑘

∗ to estimate 𝑦𝑗𝑘
𝑗   𝑝

. 

 𝑦𝑗𝑘
𝑗   𝑝

=  𝑌𝑗
𝑃𝜗𝑗𝑘

∗                                                                                                (5a) 

𝜗𝑗𝑘
𝐻𝜗𝑖𝑘 = {

𝜏𝑝  𝑤ℎ𝑒𝑛 𝑗 = 𝑖

0  𝑤ℎ𝑒𝑛 𝑗 ≠ 𝑖
                                                        (5b) 

i. MMSE Channel Estimator may be expressed in equation (6) as obtained in [15] and [17] 

ℎ̂𝑗𝑘

𝑗
=  √𝑝𝑗𝑘𝑅𝑗𝑘

𝑗
𝑍𝑗𝑘

𝑗
𝑦𝑗𝑘

𝑗   𝑝
                                                                         (6) 

𝑍𝑗𝑘
𝑗

=  ( ∑ 𝑝𝑗′𝑘′𝜏𝑝𝑅𝑗′𝑘′
𝑗

+  𝜎2𝐼𝑀

(𝑗′,𝑘′)∈ 𝑞

)

−1

                                            (7a) 

𝑅𝑗𝑘
𝑗

 𝜖 ℂ𝑀×𝑀is the spatial correlation matrix, where j superscript represents the BS’s cell index and jk subscripts represent kth UE 

in cell j. 𝑍𝑗𝑘
𝑗

is the matrix of the inverse of the normalized processed signal correlation matrix defined in [15]. 

𝑞 =  {(𝑗′, 𝑘′) ∶ 𝜗𝑗𝑘 =  𝜗𝑗′𝑘′,   𝑗′ = 1,2,3 … 𝑗,  𝑘′ = 1,2,3 … 𝑘 }      (7b) 

τp samples are reserved for UL pilot signaling in each coherence block. The set above defines the indices of all mobile terminals 

(UEs) that use the same pilot sequence as user j in cell k.  Hence, (j', k') ∈ q implies that UE k' in cell j' uses the same pilot as UE 

k in cell j. 

ii. EW-MMSE Channel Estimator may be expressed in equation (8) as obtained in [15] and [17]: 

[ℎ̂𝑗𝑘

𝑗
]

𝑚
=  

√𝑝𝑗𝑘[𝑅𝑗𝑘
𝑗

]
𝑚𝑚

∑ 𝑝𝑗′𝑘′𝜏𝑝 [𝑅𝑗′𝑘′
𝑗 ]

𝑚𝑚
+ 𝜎2

(𝑗′,𝑘′)∈ 𝑞

𝑦𝑗𝑘
𝑗   𝑝

                            (8) 

Where ℎ̂𝑗𝑘

𝑗
is the EW-MMSE estimate of ℎ𝑗𝑘

𝑗
, [15-17]. 

 

iii. LS Channel Estimator may be expressed in equation (9) as obtained in [15] and [17]: 
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     ℎ̂𝑗𝑘

𝑗
=

1

√𝑝𝑗𝑘𝜏𝑝
𝑦𝑗𝑘

𝑗   𝑝
                                            (9) 

Where ℎ̂𝑗𝑘

𝑗
 is the LS estimate of ℎ𝑗𝑘

𝑗
, the channel estimation quality is measured by the mean square error (MSE), MSE = 

‖ℎ𝑗𝑘
𝑗 −  ℎ̂𝑗𝑘

𝑗
‖

2

 [15-16]. 

The matrices in transmit precoding may be defined by using the transmit powers 𝑃𝐽  of all UEs in jth cell from BS j given in 

equation (10a) 

𝑃𝐽 = 𝑑𝑖𝑎𝑔 (𝑃𝑗1, 𝑃𝑗2 , 𝑃𝑗3 … 𝑃𝑗𝑘)  𝜖 ℂ𝐾×𝐾                                     (10a) 

Subscripts of estimated channel matrix �̂�𝑗𝑙 in Eqn. (10b) denote the channel connection between BS j and all the UEs in cell l 

with the MIMO DL channel. 

�̂�𝑗𝑙 = ℎ̂𝑙𝑘

𝑗
                                                                                       (10b) 

B. Downlink MMSE precoder 

i. Single-cell minimum mean squared error (S-MMSE): S-MMSE may be expressed in equation (11a) as obtained in [15]. 

𝐹𝐽
𝑆−𝑀𝑀𝑆𝐸 =  (�̂�𝑗𝑗𝑃𝐽(�̂�𝑗𝑗)

𝐻
+ ∑ 𝑝𝑗𝑖𝐶𝑗𝑖

𝑗
 +  ∑ ∑ 𝑝𝑙𝑖𝑅𝑙𝑖

𝑗

𝐾𝑙

𝑖=1

+  𝜎2𝐼𝑀

𝐿

𝑙=1
𝑙≠𝑗

𝐾𝑗

𝑖=1

)

−1

�̂�𝑗𝑗𝑃𝐽             (11a) 

ii. Multi-cell minimum mean squared error (M-MMSE): M-MMSE may be expressed in equation (11b) as obtained in [15]. 

𝐹𝐽
𝑀−𝑀𝑀𝑆𝐸 =  (∑ �̂�𝑗𝑙

𝐿

𝑙=1

𝑃𝑙(�̂�𝑗𝑙)
𝐻

+  ∑ ∑ 𝑝𝑙𝑖𝐶𝑙𝑖
𝑗

𝐾𝑙

𝑖=1

+  𝜎2𝐼𝑀

𝐿

𝑙=1

)

−1

�̂�𝑗𝑗𝑃𝐽             (11b) 

Pl is transmitting powers of all UEs from BS j in cell l. 

C. Power Precoding Normalization Techniques 

The transmitted signal 𝑠𝑗  in equation (1) may be expressed in [15] and [17] as: 

𝑠𝑗 =  ∑ 𝑤𝑗𝑖

𝑘𝑗

𝑖=1

𝑑𝑗𝑖                                                                                    (12a) 

The transmitted signal 𝑠𝑗  from jth BS antennas M in a cell consist of multiple information data signals 𝑑𝑗𝑖 that are transmitted. 

The transmitted signals make use of different precoding vectors 𝑤𝑗𝑖from jth BS (e.g., different spatial directivity). If there are K 

UEs, a unit power DL data vector 𝑑𝑗𝑖 = [𝑑𝑗1, … , 𝑑𝑗𝐾]from jth BS would be required for K different UEs in each cell. The 

transmitted signal 𝑠𝑗  may be obtained by multiplying the precoding vector 𝑤𝑗𝑖 and the information DL data vectors 𝑑𝑗𝑖. The 

precoding vector 𝑤𝑗𝑖 determines the direction of the spatial directivity of the DLdata signals 𝑑𝑗𝑖, while the squared norm  ||𝑤𝑗𝑖||
2 

determines the associated transmit power. 

𝑊 = [𝑤𝑗1, … , 𝑤𝑗𝐾]                                                                                    (12b) 

Where the precoding matrix 𝑊𝜖 ℂ𝑀×𝐾is defined as the M⤫K-dimensional precoding matrix and precoding vectors  𝑤𝑗𝑖𝜖 ℂ𝑀×1are 

defined as the M-dimensional precoding vectors assigned to kth different UEs. Massive MIMO usually means that 
M

K
> 1 and 

M≫K. When the precoding vectors are selected, we need to ensure that too much transmit power is not used. Let the maximum 

downlink transmit power be P, P (PJ = [𝑃𝑗1 , 𝑃𝑗2, 𝑃𝑗3 … 𝑃𝑗𝐾]T), the data vectors 𝑑𝑗𝑖 = 𝑁𝐶(0, 𝑃) be modeled as a circularly symmetric 

complex Gaussian distribution having circular symmetry and 𝑁𝐶 with zero mean. The [𝑃𝑗1, 𝑃𝑗2, 𝑃𝑗3 … 𝑃𝑗𝐾] are allocated from the 

jth BS to UEs in each cell and the squared Frobenius norm of W should equal the maximum transmit power [1-6] as expressed in 

equation (12c) 

||𝑊||𝐹
2 = 𝑃                                                                                               (12c) 

There are two types of power precoding normalization techniques viz: vector normalization (VN) and matrix normalization (MN) 

[1-6]. The major idea is to begin from an arbitrarily selected precoding matrix 𝐹 = [𝑓𝑗1, … , 𝑓𝑗𝐾] and then it is adapted into 

satisfying the power constraint. 
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1) Vector normalization (VN) technique: In this technique, we first normalize each column in matrix F to have a unit 

norm and all the entries are scaled with the same square root ratio of maximum transmit power P to number of UEs K. This 

satisfies equation (12c). We express the vector normalization technique as 

𝑊 = √
𝑃

𝐾
[

𝑓1

||𝑓1||
…

𝑓𝐾

||𝑓𝐾||
]                                                  (13a) 

One key merit is that the computation of the precoding vectors at BS j needs only MK complex multiplications, which are 

required to compute ||𝑓𝑘|| in equation (13a) for every UE [16]. 

 

2) Matrix normalization (MN) technique: In this technique, we select any precoding matrix F and all the entries are 

scaled with the square root of maximum transmit power P which is used to satisfy (12c). We express matrix normalization 

technique as 

  𝑊 =
√𝑃

||𝐹||
𝐹

𝐹                                                                                                     (13b) 

The computation of the precoding matrix at BS j requires MK complex multiplications, which are needed to compute ||𝐹||𝐹in 

equation (13b) for all UEs at once [3]. 

 

III.  Downlink SINR, Downlink Spectral Efficiency (DL SE), and Network throughput 

The expression for the effective downlink SINR as given in [15-17] is expressed in equation (14).  

𝑆𝐼𝑁𝑅𝑗𝑘
𝐷𝐿 =  

𝑝𝑗𝑘|𝔼{𝑤𝑗𝑘
𝐻 ℎ𝑗𝑘

𝑗}|
2

∑ ∑ 𝑝𝑙𝑖|𝔼{𝑤𝑙𝑖
𝐻ℎ𝑗𝑘

𝑙}|
2

−𝐾
𝑖=1 𝑝𝑗𝑘|𝔼{𝑤𝑗𝑘

𝐻 ℎ𝑗𝑘
𝑗}|

2
𝐿
𝑙=1 +  𝜎2

             (14) 

The expectation 𝔼{} is determined with reference to channel realizations. Therefore, a downlink SE maximizes the SINR in Eqn. 

(14) for a given channel estimate. The downlink SE is expressed in equation (15) as given in [15-17]: 

𝑆𝐸𝑗𝑘
𝐷𝐿 =  

𝜏𝑐 − 𝜏𝑝

𝜏𝑐

log2( 1 +  𝑆𝐼𝑁𝑅𝑗𝑘
𝐷𝐿)                                                        (15) 

The term 
𝝉𝒄−𝝉𝒑

𝝉𝒄
 is the prelog factor that represents the portion of samples per coherence interval that are used for downlink data 

transmission. The network throughput (bits/s) is obtained by the multiplication of operational bandwidth (Hz) and SE (bits/s/Hz). 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (
𝑏𝑖𝑡

𝑠
) = 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ (𝐻𝑧) × 𝑆𝐸𝑗𝑘

𝐷𝐿 (

𝑏𝑖𝑡
𝑠

𝐻𝑧
)           (16) 

IV.   Simulation, Results and Discussion 

A square pattern network layout is used in [15-17]. The 16-cell setup is utilized and each cell has an area of 1 km2. Inter-cell and 

intra-cell interference received by all the base stations are the same in all directions. The value of the large-scale fading 

coefficient, path loss factor and standard deviation, operating bandwidth is as given in [15]. A 100mW downlink transmit power 
was allocated to each UE in a particular cell and the number of UEs per cell given as 10 [15]. The UEs were equally distributed in 

each cell. A channel characterized by uniform local scattering (ULA) and correlated Rayleigh fading with a value of angular 

standard deviation (ASD) of 10˚ (degree) was used. The downlink throughput, SE, and SINR/SNR were computed and simulated 

to obtain numerical results. The simulation parameters are tabulated in table 1. 

Table 1: Simulation Parameters 

Parameter Value 

Network layout Square pattern (wrap-around) 

Cell area 1km ⤫ 1km 

Number of BS antennas  100 

Number of Cells  16 
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Number of UEs (or users) in each cell 10 

Communication Bandwidth B = 20 MHz 

 DL transmit power  100mW (-10dB) 

Noise Figure 7dB 

Noise Variance  −174 + 10 log10 𝐵 +  Noise Figure 

Pathloss exponent 3.76 

Shadow fading (standard deviation) 10 

Distance between UE k in cell l and BS j 𝑑𝑙𝑘
𝑗

 

Average channel gain using the large-scale fading 

model  
−35.3 − 37.6 log10 𝑑𝑙𝑘

𝑗
 

Pilot reuse factor f 1, 2,4 or 16 

Total coherence block length (τc) 200 

Number of  pilot sequences (τp) f K 

Channel Model Uniform local scattering model and correlated 

Rayleigh fading channel 

Angular standard deviation 10˚(degree) 

Number of channel realizations 10 

Number of random setup 1 

-Impact on Network throughput 

Network throughput is one of the vital metric to evaluate network performance in mMIMO networks. This metric is expressed in 

equation (16) and measures the quality of service (QoS) of the network. In order to examine the impact of throughput on the 

performance of the compared precoders, the three different estimators discussed in section (II)A were introduced into the 

simulation as shown in figures 1 –3.  

 

Figure 1: Throughput vs. Number of antennas (M) for K = 10 UEs and f = 4 with the MMSE estimator. 
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Figure 1 depicts the average DL sum throughput plotted against the number of antennas with MMSE channel estimates using 

power normalization when the pilot reuse factor is 4 (f = 4). M-MMSE with vector normalization (VN) has the highest average 

sum throughput for any number of antennas and passes from 3.10⤫108 bit/s to 12.37⤫108 bit/s as the number of antenna 

increases. M-MMSE with matrix normalization (MN) has the lowest average sum throughput for any number of antennas. S-

MMSE with vector normalization (VN) performs better than S-MMSE with matrix normalization (MN). The downlink 

throughput comparison of the two basic linear precoding techniques with MMSE channel estimation and pilot reuse factors of 1, 

2, 4, and 16 under power normalization are presented in table 2. The values of the precoding techniques when f = 4 are in bold 

face in table 2 

Table 2: Downlink throughput (bit/s) for MMSE Channel Estimator with M=100, K =10, and different pilot reuse factor (f =1, 2, 

4, and 16).  

MMSE Channel Estimates for M = 100 

Precoding 

technique 

Pilot reuse factor (Throughput) 

f = 1 f = 2 f = 4 f = 16 

M-MMSE-MN 7.634E+08  7.018E+08 6.094E+08 1.623E+08  

M-MMSE-VN 1.397E+09 1.357E+09  1.237E+09 3.337E+08  

S-MMSE-MN 8.296E+08  7.767E+08  6.854E+08 1.634E+08  

S-MMSE-VN 1.036E+09  9.454E+08 8.27E+08 2.271E+08  

We compare the percentage performance of precoding techniques using figure 1 and table 2 with respect to the method applied in 

[15]. 

S-MMSE-VN = 
8.27E+08

1.237E+09
× 100 = 66.86% of the sum throughput generated by M-MMSE-VN. 

S-MMSE-MN = 
6.854E+08

1.237E+09
× 100 = 55.40% of the sum throughput generated by M-MMSE-VN. 

M-MMSE-MN = 
6.094E+08

1.237E+09
× 100 = 49.26% of the sum throughput generated by M-MMSE-VN. 

The M-MMSE-MN technique gives 50.74% lower throughput than M-MMSE-VN, but 6.14% lower throughput than S-MMSE-

MN and 17.6% lower throughput than S-MMSE-VN. 

 

Figure 2: Throughput vs. Number of antennas (M) for K = 10 UEs and f = 4 with the EW-MMSE estimation. 
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Figure 2 depicts the average DL sum throughput plotted against the number of antennas with the EW-MMSE Channel Estimates 

using power normalization when the pilot reuse factor is 4 (f = 4). M-MMSE with vector normalization (VN) has the highest 

average sum throughput for any number of antennas and passes from 3.93⤫108 bit/s to 13.24⤫108 bit/s as M increases while M-

MMSE with matrix normalization (MN) has the lowest average sum throughput for any number of antennas and passes from 2.87 

⤫108 bit/s to 7.12⤫108 bit/s as the number of antenna increases. S-MMSE with vector normalization (VN) performs better than S-

MMSE with matrix normalization (MN). MN produces the same precoding weight among UEs by normalizing over all UEs while 

VN conducts precoding for each UE individually, which results in different throughput among UEs. The downlink throughput 

comparison of the two basic linear precoding techniques with EW-MMSE channel estimation and pilot reuse factor of 1, 2, 4 and 

16 under power normalization are presented in table 3 with the values of the precoding techniques when f = 4 in bold face. 

Table 3: Downlink throughput (bit/s) for EW-MMSE Channel Estimator with M=100, K =10, and different pilot reuse factor (f 

=1, 2, 4, and 16).  

EW-MMSE Channel Estimates for M = 100 

Precoding 

technique 

Pilot reuse factor (Throughput) 

f = 1 f = 2 f = 4 f = 16 

M-MMSE-MN 7.517E+08  7.963E+08  7.115E+08 1.604E+08  

M-MMSE-VN 1.167E+09  1.379E+09 1.324E+09 3.407E+08  

S-MMSE-MN 8.395E+08  8.636E+08  7.6E+08 1.651E+08 

S-MMSE-VN 1.118E+09  1.128E+09  9.699E+08 2.36E+08 

We compare the percentage performance of precoding techniques using figure 2 and table 3 in respect to the method applied in 

[15]. 

S-MMSE-VN = 
9.699E+08

1.324E+09
× 100 = 73.26% of the sum throughput generated by M-MMSE-VN. 

S-MMSE-MN = 
7.6E+08

1.324E+09
× 100 = 57.40% of the sum throughput generated by M-MMSE-VN. 

M-MMSE-MN = 
7.115E+08

1.324E+09
× 100 = 53.74% of the sum throughput generated by M-MMSE-VN. 

The S-MMSE-VN technique gives 26.74% lower throughput than M-MMSE-VN, but 15.86% higher throughput than S-MMSE-

MN and 19.52% higher throughput than M-MMSE-VN.  For example, the sum throughput of M-MMSE precoding with VN 

(when M = 20) achieves the same performance as M-MMSE precoding with MN (when M = 70). Figures 1 and 2 depict that the 

number of antennas M required to achieve a target sum throughput in MMSE and EW-MMSE channel estimates using M-MMSE 
precoding technique with matrix normalization (MN) is higher than the one required by vector normalization (VN) by a factor of 

3½. 

 

Figure 3: Throughput vs. Number of antennas (M) for K = 10 UEs and f = 4 with LS estimation. 
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Figure 3 presents the average DL sum throughput plotted against the number of antennas with LS channel estimates using power 

normalization when the pilot reuse factor is 4 (f = 4). M-MMSE with vector normalization (VN) has the highest average sum 

throughput from the point when the number of antennas is greater than or equal to 40 (M ≥ 40) while M-MMSE with matrix 

normalization (MN) has the lowest average sum throughput from the point when the number of antennas is less than or equal to 

40 (M ≤ 40). S-MMSE with vector normalization (VN) and matrix normalization (MN) has the same sum throughput value, 

which ranges from 3.51⤫107 bit/s to 6.07⤫107 bit/s as the number of antenna increases. The downlink throughput comparison of 

the two basic linear precoding techniques with LS channel estimation and pilot reuse factor of 1, 2, 4 and 16 under power 

normalization are presented in table 4 with the values of the precoding techniques when f = 4 in bold face. 

Table 4: Downlink throughput (bit/s) for LS Channel Estimator with M=100, K =10, and different pilot reuse factor (f =1, 2, 4, 

and 16).  

LS Channel Estimates for M = 100 

Precoding 

technique 

Pilot reuse factor (Throughput) 

f = 1 f = 2 f = 4 f = 16 

M-MMSE-MN 1.759E+07  3.384E+07  6.223E+07 1.528E+08 

M-MMSE-VN 1.762E+07 3.4E+07  6.297E+07  3.001E+08  

S-MMSE-MN 1.767E+07  3.32E+07  6.065E+07 1.471E+08 

S-MMSE-VN 1.768E+07  3.32E+07 6.079E+07  2.106E+08  

We compare the percentage performance of precoding techniques using figure 3 and table 3 by applying the methods used in [15]. 

S-MMSE-VN = 
6.079E+07 

6.297E+07 
× 100 = 96.53% of the sum throughput generated by M-MMSE-VN. 

S-MMSE-MN = 
6.065E+07

6.297E+07 
× 100 = 96.32% of the sum throughput generated by M-MMSE-VN. 

M-MMSE-MN = 
6.223E+07

6.297E+07 
× 100 = 98.82% of the sum throughput generated by M-MMSE-VN. The M-MMSE-MN technique 

gives 1.18% lower throughput than M-MMSE-VN, but 2.5% higher throughput than S-MMSE-MN and 2.26% higher throughput 

than S-MMSE-VN.  

-Impact on SE 

This metric is expressed in equation (15), we simulated the SE by increasing the number of UEs in the cells, to evaluate the 

performance of the network. Figures 4 - 6 compares the effect of the different estimators on the SE metric. 

 

Figure 4: Downlink SE vs. Number of UEs (K) for M = 100 antennas and f = 4 with MMSE estimation. 
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Figure 4 shows the average DL sum SE as a function of the number of UEs with MMSE channel estimates using power 

normalization when the pilot reuse factor is 4 (f = 4). M-MMSE and S-MMSE with vector normalization (VN) have higher 

average sum SE than S-MMSE and M-MMSE with matrix normalization (MN) when the number of UEs is more than 1 (UE > 

1).This is because of the expectation 𝔼 {√
𝑷

𝑲
}  which implies that the same transmit power is assigned to UEs in VN. 

 

Figure 5: Downlink SE vs. Number of UEs (K) for M = 100 antennas and f = 4 with EW-MMSE estimation. 

Figure 5 shows the average DL sum SE as a function of the number of UEs with EW-MMSE channel estimates using power 

normalization when the pilot reuse factor is 4 (f = 4). M-MMSE and S-MMSE with vector normalization (VN) have higher 

average sum SE than S-MMSE and M-MMSE with matrix normalization (MN) when the number of UEs is more than 1 (UE > 1). 

For UE > 1, the expectation becomes 𝔼 {
√𝑷

||𝑭||𝑭
}, hence different transmit powers are assigned to UEs in MN. For example, in the 

above figures, the sum SE of M-MMSE precoding with VN (when K = 3) achieves the same performance as M-MMSE precoding 

with MN (when K = 5). Figures 4 and 5 show that the number of UEs K required to achieve a target sum SE in MMSE and EW-

MMSE channel estimates using M-MMSE precoding technique with vector normalization (VN) is smaller than the one required 

by matrix normalization (MN) by a factor of 1½ (5/3). 

 

Figure 6: Downlink SE vs. Number of UEs (K) for M = 100 antennas and f = 4 with LS estimation. 

Figure 6 presents the average DL sum SE as a function of the number of UEs with LS channel estimates using power 

normalization when the pilot reuse factor is 4 (f = 4). M-MMSE with vector normalization (VN) performs better than S-MMSE 

with vector/matrix normalization and M-MMSE with matrix normalization (MN). It is observed from figures 4, 5, and 6 that as 

the number of UEs (K) per cell rises, the average sum SE rises. In general, it is observed that M-MMSE with vector normalization 

(VN) precoding technique has the highest SE with an increase in UEs when compared to the S-MMSE with vector/matrix 

normalization and M-MMSE with matrix normalization (MN).VN performs precoding for each UEs separately, which generates 

different SE among UEs. In contrast, MN produces the same precoding weight among UEs by normalizing over all UEs. 
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-Impact on SNR 

The signal-to-noise ratio (SNR) as a performance metric in the mMIMO networks generally depends on three parameters namely 

the transmit power, channel gain, and noise power [16]. The SNR in this case is used only to evaluate the transmit power of the 

BS where the other parameters are normalized to unity. Figures 7 - 9 compares different SNR values resulting from the three 

different channel estimates. 

 

Figure 7: Downlink SE vs. Signal to Noise [dB] for M = 100 antennas and f = 4 with MMSE estimation. 

Figure 7 shows the average DL sum SE as a function of SNR with MMSE Channel Estimates using power normalization when 
the pilot reuse factor is 4 (f = 4). M-MMSE with vector normalization (VN) has a superior performance than S-MMSE with 

vector/matrix normalization and M-MMSE with matrix normalization (MN). There is a finite increase in the SE of M-MMSE 

with vector and matrix normalization at SNR from -15 dB to 40dB. The S-MMSE-VN has a better SE than S-MMSE-MN at SNR 

of -15dB to 20 dB. At SNR ≥ 40 dB, the slope of the graph becomes relatively steadier up to the SE value of 60bit/s/Hz.  

 

Figure 8: Downlink SE vs. Signal to Noise [dB] for M = 100 antennas and f = 4 with EW-MMSE estimation. 

Figure 8 gives the average DL sum SE as a function of SNR with EW-MMSE channel estimates using power normalization when 

the pilot reuse factor is 4 (f = 4). M-MMSE with vector normalization (VN) has a better performance than S-MMSE with 

vector/matrix normalization and M-MMSE with matrix normalization (MN). There is a finite increase in SE of M-MMSE with 
vector and matrix normalization at SNR from -15 dB to 40dB. The S-MMSE with vector normalization has a better performance 
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than S-MMSE with matrix normalization (MN) at low SNR from -15dB to 20 dB and after SNR ≥ 20 dB the slope becomes 

relatively steadier at SE value of 48bit/s/Hz.  

 

Figure 9: Downlink SE vs. Signal to Noise [dB] for M = 100 antennas and f = 4 with LS estimation. 

Figure 9 shows the average DL sum SE as a function of SNR with LS channel estimates using power normalization when the 

pilot reuse factor is 4 (f = 4). There is a finite increase in SE of M-MMSE with vector/ matrix normalization and S-MMSE with 

vector/ matrix normalization at low SNR from -15 dB to 10dB. M-MMSE with vector and matrix normalization has a better 

performance than S-MMSE with vector and matrix normalization at high SNR from 20dB to 45dB. The complex analysis 

associated with M-MMSE is higher than that of S-MMSE because of inter-cell interference suppression. In general, figures 7, 8, 

and 9 show that the M-MMSE-VN precoding technique has better performances when compared to the M-MMSE-MN and S-

MMSE-VN/S-MMSE-MN. The M-MMSE-VN precoding technique performs best at both high and low SNR. From figures 7, 8, 
and 9 it can be inferred that an increase in the transmit power can boost the SE of massive MIMO networks. This is because as 

transmit power of the BS antennas increases, the sum SE increases.  

-Impact on SINR 

SINR is a performance metric used to measure the desired signal to interference plus noise ratio. This metric is expressed in 

equation (16). The SINR was simulated by increasing the number of antennas in the mMIMO network. The results for the three 

different estimators are presented in figures 10 – 12. 

 

Figure 10: Average SINR vs. Number of antennas (M) for K = 10 UEs and f = 4 with MMSE estimation. 
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Figure 10 presents the average SINR as a function of the number of antennas with MMSE channel estimates using power 

normalization when the pilot reuse factor is 4 (f = 4). M-MMSE-VN has the highest SINR for any number of antennas while M-

MMSE-MN and S-MMSE-MN performed poorly because 𝔼 {
𝑭

||𝑭||𝑭
} is unknown and produces the same precoding weight among 

UEs by normalizing over all UEs. 

 

Figure 11: Average SINR vs. Number of antennas (M) for K = 10 UEs and f = 4 with EW-MMSE estimation. 

 

Figure 12: Average SINR vs. Number of antennas (M) for K = 10 UEs and f = 4 with LS estimation. 

Figure 11 presents the average SINR plotted against the number of antennas with the MMSE channel estimates using power 

normalization when the pilot reuse factor is 4 (f = 4). M-MMSE with vector normalization (VN) has the highest SINR for any 

number of antennas while M-MMSE and S-MMSE with matrix normalization (MN) performed poorly. Figure 12 shows the 

average SINR plotted against the number of antennas with LS channel estimates using power normalization when the pilot reuse 

factor is 4 (f = 4). S-MMSE with vector/matrix normalization performs better than M-MMSE with vector/matrix normalization 

when the number of antennas is less than 50 (M < 50). In Figure 10, 11, and 12, the signal to interference plus noise ratio (SINR) 

increases linearly with the number of base station antennas and does not saturate as the number of base station antennas tend to 

infinity.  
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V. Conclusion 

Massive MIMO technology is one of the key enabling technologies for new and future generation wireless communication 

networks. It can increase the throughput and SE. Massive MIMO has been used in this work to show the power normalization 

effects on linear precoding techniques at the BS and on channel estimation via a downlink. The above figures show throughput, 

SE, and SNR (or SINR) performance metrics with two basic precoding techniques such as M-MMSE and S-MMSE using vector 

normalization (VN) and matrix normalization (MN) respectively. MMSE and EW-MMSE estimators produced the highest 

average sum SEs while LS estimator produced the lowest average sum SEs. There is a significantly large percentage loss of 

average sum SE if the LS estimator is used. LS estimator performs poorly when compared to EW-MMSE and MMSE estimators. 

The SE, throughput, and SINR (or SNR) are not much improved even if the pilot reuse factor f is increased. Numerical results 

showed that M-MMSE-VN and S-MMSE-VN are effective at achieving higher SE, throughput, and SNR (or SINR) than M-
MMSE-MN and S-MMSE-MN. However, transmit power is fairly assigned to UEs in MN than in VN for practical scenarios. In 

future work, we will consider the issue of using power normalization on non-linear precoding techniques with optimization 

algorithms to solve different power allocation issues. 
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