
[image: Image 1]

INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING, 

MANAGEMENT & APPLIED SCIENCE (IJLTEMAS) 

ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue V, May 2024

Power Normalization Perspective for massive MIMO Network 



using MMSE Precoding Techniques 

1* Eze, Gerald C., 2Ahaneku, Mamilus A., and 3Chijindu, Vincent C. 

1Department of Electronic/Electrical Engineering, Federal Polytechnic, Oko, Aguata, Anambra State, Nigeria. 

2,3Department of Electronic Engineering, University of Nigeria, Nsukka, Enugu State, Nigeria. 

DOI : https://doi.org/10.51583/IJLTEMAS.2024.130518 

Received: 01 May 2024;  Revised: 12 May 2024; Accepted: 17 May 2024; Published: 15 June 2024 

Abstract:  This  paper  seeks  ways  to  improve  spectral  efficiency  (or  throughput)  while  mitigating  multi-user  interferences  for large-scale antenna arrays, massive multiple input multiple output (mMIMO) systems via the use of the minimum mean squared error (MMSE) precoding schemes. The impact of the power at the user equipment (UEs) being adjusted to meet the transmission power  constraint  of  the  BS  otherwise  known  as  power  normalization  on  the  performance  of  the  single  and  multi-cell  MMSE

precoders  (S-MMSE  and  M-MMSE)  was  studied.  The  choice  of  power  normalization  (matrix  normalization  or  vector normalization) and how they can impact worse or better performances on  S-MMSE and M-MMSE under three different channel estimates with respect to varying pilot reuse factors were simulated and analyzed. We considered a downlink  mMIMO network model that accounts for the number of antennas and single-antenna UEs. Numerical results obtained after simulations depict that M-MMSE with vector normalization (VN)  out-performs S-MMSE with vector/matrix normalization and  M-MMSE with matrix normalization (MN) by having the highest average sum SE, throughput, and signal-to-interference plus noise ratio (SINR/SNR) for any number of antennas and UEs in the three-channel estimators. LS channel estimator performs the least when compared to EW-MMSE and MMSE channel estimators.
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I. Introduction 

The massive multi-input multi-output (m MIMO) network is an extended MIMO wireless communication technology that serves several mobile  users or users equipment (UEs)  simultaneously in the same frequency-time resource [1]. MIMO networks are an integral  component  of  present  wireless  networks,  and  in  recent  years  they  have  been  used  widely  to  achieve  high  spectral efficiency  (SE)  and  data  throughput.  Before  the  inception  of  MIMO,  single-input-single-output  (SISO)  network  were  mostly used, which had very low SE and throughput and could not serve a large number of UEs with high reliability. To accommodate this huge demand for data traffic, various new MIMO technology like single-user MIMO (SU-MIMO), multi-user MIMO (MU-MIMO),  and  distributed  MIMO  were  introduced  and  developed.  However,  these  new  technologies  are  also  not  enough  to accommodate the ever-increasing data traffic. The wireless UEs have increased drastically in the last few  years, and these  UEs produce trillions of data that must be handled efficiently with more reliability. The current MIMO technologies associated with 4G/LTE network is unable to handle this large influx in data traffic with more speed and reliability. Therefore, the 5G and next-generation  networks  have  considered  m  MIMO  technology  as  a  key  enabling  technology  needed  to  overcome  the  challenges created by large-scale data traffic and UEs [1, 15].

In m MIMO, precoding is a signal processing technique that is required to direct transmitted signals towards the UEs. Precoding is usually performed at the base station (BS) before signal transmission in order to mitigate the impact of pilot contamination [2-3]. Linear precoding has a critical role in m MIMO

and the basic linear precoding schemes are the maximum ratio (MR), zero-forcing (ZF), regularized zero-forcing (RZF), single-cell minimum mean squared error (S-MMSE), and multi-cell minimum mean squared error (M-MMSE). The main objective  of precoding  in  m  MIMO  systems  is  to  improve  the  gain  of  the  large-scale  antenna  array  and  mitigate  the  impact  of  multiuser interference  [4].  In  order  to  utilize  basic  linear  precoding,  it  is  required  that  the  power  at  the  UEs  be  adjusted  to  meet  the transmission  power  constraint  of  the  BS  and  this  is  known  as  precoding  power  normalization  [5,  11].  Power  normalization  is categorized into two major techniques: vector normalization (VN) and matrix normalization (MN) [5-12]. MN assigns different powers  to  UEs and applies the  same  precoding  weight to  UEs  by  normalizing  over all  UEs  (𝔼 { 𝑭 }). In  contrast,  VN assigns

||𝑭||𝑭

same  power  to  UEs  and  generates  different  precoding  weight  for  each  UE  separately  (𝔼 { 𝒇 }),  which  results  in  different

‖𝒇‖

throughput among UEs [12].

The selection of the precoding weight, 𝑭 in MN will determine how the transmit power is allocated between the different UEs.

Hence, power allocation is determined by the precoders. For instance, MR allocates less power to UEs with weak channels than UEs with strong channels, while ZF does the opposite. Hence, if one tries to compare MR and ZF under MN, the different power www.ijltemas.in                                                                                                                                                                  Page  172
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allocations will have strong leverage on the results [5-12]. The aforementioned problem was resolved with VN and VN method is employed  more  often  in  the  literature  than  MN.  With  VN,  power  allocation  is  not  determined  by  the  precoders.  However,  the main problem with VN is the same power 𝑷 is allocated to the UEs,  K (𝔼 {√𝑷}), which is undesirable if some UEs have weak 𝑲

channels and others have strong channels. A conscious decision therefore should be made when it comes to power normalization and precoders between UEs. In this paper, we consider the MMSE precoders with power normalization.



A.  Related works 

The performance analysis of linear precoding techniques for downlink transmissions in single-cell m MIMO Systems was done in

[6 - 8] using power normalization. The tested linear precoding techniques considered in [6] were ZF, MR, RZF and the truncated polynomial  expansion  (TPE),  while  MR  and  ZF  were  considered  in  [7]  and  [8].  The  results  analyzed  show  that  power normalization for MR gives good performance at low downlink transmission power while ZF produces good performance at high downlink  transmission  power.  Studies  on how  vector normalization  (VN)  and matrix normalization  (MN) techniques affect  the performance of MR, ZF, and RZF precoding in multi-cell m MIMO were presented in [5] and [9-11], respectively. The results show that VN largely outperforms MN for MR, ZF, and RZF. An analysis done in [9] and [10] aims to determine the performance of m MIMO for cell-boundary users. Presented results show that for the downlink, VN is better for ZF while MN is better for MR

at  low  signal-to-noise-ratio  (SNR)  regardless  of  number  of  cell-boundary  UEs.  In  contrast,  for  the  uplink,  MR  should  be  used instead of ZF at low SNR.  In [5], the authors showed that MN and VN treat the noise and interference in the same manner, but have  different  effects  on  pilot  contamination  and  received  signal  power.  This  implies  that  in  massive  MIMO,  non-coherent interference and noise, rather than pilot contamination, are often the major limiting factors of considered precoding schemes. In

[11],  a  validated  asymptotic  analysis  for  different  values  of  the  number  of  antennas  (M)  and  UEs  (K)  was  investigated.  The results showed that the number of antennas required to achieve a target sum rate with VN is smaller than the one required  by MN

by a factor of 3 or 4. In [12], the authors researched on the impact of the power normalization in  MU-MIMO. Quality indexes such as system capacity and fairness were presented while considering user scheduling.  Simulation results show that  VN limits the fairness index (FI), while performing better than MN in system capacity. However, although the MN falls behind VN in terms of the system capacity, MN has superiority in fairness. Therefore, VN is effective in the relatively low FI. MN is appropriate for improving the FI while losing a certain amount of system capacity.

The above related works considered power normalization on single-cell precoding schemes such as MR, ZF, and RZF in the  m MIMO networks.  The effect of power normalization  on multi-cell precoding scheme has not been thoroughly investigated yet.

However,  a detailed  treatment  of  the  impact  of  power normalization  on multi-cell  precoder does  not  exist in  the  literature. The aim of this paper is to fulfill this research gap by  investigating the effect of power normalization on MMSE precoding schemes such as S-MMSE and M-MMSE with reference to the pilot reuse factor, correlation channels, SNR/SINR as well as the number of antennas and UEs in massive MIMO Networks. The MMSE precoding schemes have an acceptable performance required to mitigate intra-cell and multi-cell interference [13-14, 20]. The main contributions of this work are:

  To elaborate and analyze power normalization techniques using MMSE precoding schemes.

  To  show  how  the  choice  of  power normalization  affects  the  performance  of  S-MMSE  and  M-MMSE  under  different channel estimates with respect to the pilot reuse factor.

II.  System Model and Power Normalization Techniques 

We consider the downlink of a m MIMO cellular network with multi-cell network of up to 16 cells. The BS of each cell has M

antennas  and  serves  K  single-antenna  UEs  in  the  same  time-frequency  resource.  The  system  model  for  downlink  (DL)  may  be determined as given in [15]:

𝐿

𝐻

𝑦

𝑗

𝑗𝑘 =   ∑(ℎ𝑗𝑘 )

𝑠𝑗 + 𝑛𝑗𝑘                                                            (1) 𝑗=1

L indicates the number of cells, (.)H indicates the Hermitian transpose matrix operator and the received DL signal 𝑦𝑗𝑘 𝜖 ℂ𝑀×𝐾 at UE k in cell j is modeled above. ℎ 𝑗

𝑗𝑘 𝜖 ℂ𝑀×𝐾  is them MIMO DL channel matrix,  where ℂ denotes a complex value matrix,  M is the  number  of  BS  antennas  and  it  represents  the  number  of  rows  in  the  matrix.  K   is  the  number  of  UEs  which  represents  the number of columns in the matrix,  j superscript denotes the BS’s cell index and  jk subscripts denote kth UE in cell j.

ℎ 𝑗

𝑗

𝑗𝑘

=   𝑁𝐶(0, 𝑅 )                                                                                      (2) 

𝑗𝑘

ℎ 𝑗

𝑗

𝑗𝑘 is  the  correlated  Rayleigh  channel  and 𝑅

𝜖 ℂ𝑀×𝑀 is the spatial correlation matrix, where  j superscript represents the BS’s 𝑗𝑘

cell  index  and   jk  subscripts  represent  kth  UE  in  cell  j.  ℎ 𝑗

𝑗𝑘 is  modeled  by  circularly  symmetric  complex  Gaussian  distribution having circular symmetry 𝑁𝐶with zero mean and the spatial correlation matrix. The receiver noise may be expressed as 𝑛

(
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Where 𝑛𝑗𝑘 represents the additive white Gaussian noise (AWGN) vector and 𝑠𝑗 is the DL transmit signal [15-16].



A.  Downlink Channel Estimators 

For efficient usage of BS antennas, each BS is required to acquire knowledge of the channels from the UEs which are active in the  coherence  block  [17].  The  BS  j  estimates  the  channels  knowledge  from  its  UEs  in  a  particular  cell  j.  The  massive  MIMO

network  being  considered  operates  according  to  the  time  division  duplex  (TDD)  protocol.  The  TDD  protocol  which  was discussed  extensively  in  [13,  14]  allows  the  downlink  channel  estimates  to  be  determined  from  the  uplink  pilot  signal  by exploiting channel reciprocity. The uplink pilot signal 𝑌𝑃

𝑗 received at BS j defined in [15, 17] is expressed in equation (4).

𝑘𝑗

𝑘

𝐿

𝑙

𝑌𝑃

𝑗

𝑇

𝑗

𝑇

𝑝

𝑗

=   ∑ √𝑝𝑗𝑘ℎ𝑗𝑘 𝜗𝑗𝑘 + ∑ ∑ √𝑝𝑙𝑖ℎ𝑙𝑖 𝜗𝑙𝑖 + 𝑁              (4)

𝑗

𝑘 =1

𝑙=1 𝑖 =1

𝑙≠𝑗

The  first  part  in  Equation  (4)  denotes  the  desired  pilots  in  the  cell,  the  second  part  denotes  the  interfering  pilots  from  other 𝑝

adjacent cells and then the third part 𝑁 denotes the receiver noise.

𝑗

𝑝

Matrix 𝑁  𝜖 ℂ𝑀×𝜏𝑝 contains independent identically distributed elements which follow a complex Gaussian distribution with zero 𝑗

mean and noise variance 𝜎2. 𝑝𝑗𝑘 is the deterministic uplink pilot signal and power coefficient for the pilot of user k in cell j. In the channel estimation phase, the aggregated received uplink pilot signals at BS j are denoted as 𝑌𝑃

𝑗  𝜖 ℂ𝑀×𝜏𝑝   where 𝜏𝑝 is the length of

a pilot sequence (and also equals to the number of orthogonal pilot sequences available for the network. Generalized pilot reuse was supported by denoting the relation between 𝜏𝑝 and  K using the expression 𝜏𝑝 = 𝑓𝐾, where 𝑓 is the pilot reuse factor (1, 2, 4

or 16) [17]. The universal pilot reuse factor is  f =1 while the non-universal pilot reuse factors are  f = 2, 4, 16 [11]. The mutually orthogonal uplink pilot matrix 𝜏𝑝 was organized as columns at BS j, 𝜗𝑗 = [𝜗𝑗1, 𝜗𝑗2, 𝜗𝑗3, … , 𝜗𝑗𝑘]𝜖 ℂ𝜏𝑝 ×  𝐾 which were transmitted by  the  kth  UE  of  the  cell  j.  All  pilot  sequences  are  assumed  to  originate  from  a  predefined  orthogonal  pilot  book  in  which sequence 𝜗𝑇

𝑙𝑖  𝜖 ℂ𝜏𝑝  was defined [15, 17] and expressed in equations (5a) to equation (6): 𝑗   𝑝

BS j correlates  𝑌𝑃

∗

𝑗  with 𝜗𝑗𝑘to estimate 𝑦



. 

𝑗𝑘

𝑗   𝑝

 

𝑦

=   𝑌𝑃𝜗∗                                                                                                (5a) 𝑗𝑘

𝑗

𝑗𝑘

𝜏

𝜗 𝐻

𝑝  𝑤ℎ𝑒𝑛 𝑗 = 𝑖

𝑗𝑘 𝜗𝑖𝑘 = {

(5b)

0  𝑤ℎ𝑒𝑛 𝑗 ≠ 𝑖

i.

MMSE Channel Estimator may be expressed in equation (6) as obtained in [15] and [17]

𝑗

ℎ̂

𝑗

𝑗

𝑗   𝑝

𝑗𝑘

=   √𝑝𝑗𝑘𝑅 𝑍 𝑦

(6)

𝑗𝑘 𝑗𝑘 𝑗𝑘

−1

𝑍𝑗 =   ( ∑

𝑝

𝑗

+   𝜎2𝐼 )

(7a)

𝑗𝑘

𝑗′𝑘′𝜏𝑝𝑅𝑗′𝑘′

𝑀

(𝑗′,𝑘′)∈ 𝑞

𝑅𝑗  𝜖 ℂ𝑀×𝑀is the spatial correlation matrix, where  j superscript represents the BS’s cell index and  jk subscripts represent kth UE

𝑗𝑘

𝑗

in cell j. 𝑍 is the matrix of the inverse of the normalized processed signal correlation matrix defined in [15].

𝑗𝑘

𝑞  =   {(𝑗′, 𝑘′) ∶ 𝜗𝑗𝑘 =   𝜗𝑗′𝑘′,   𝑗′ = 1,2,3 … 𝑗,  𝑘′ = 1,2,3 … 𝑘 }      (7b) τp samples are reserved for UL pilot signaling in each coherence block. The set above defines the indices of all mobile terminals (UEs) that use the same pilot sequence as user  j  in cell  k.  Hence, ( j', k' ) ∈ q implies that UE  k'  in cell  j'  uses the same pilot as UE

k  in cell  j. 

ii.  EW-MMSE Channel Estimator may be expressed in equation (8) as obtained in [15] and [17]: 𝑗 ]

𝑗

√𝑝𝑗𝑘[𝑅𝑗𝑘

[ℎ̂

𝑚𝑚

𝑗   𝑝

𝑗𝑘 ]

=

𝑦

(8)

𝑗𝑘

𝑚

∑

𝑝

𝑗

𝑗′𝑘′𝜏𝑝 [𝑅

]

+  𝜎2

(𝑗′,𝑘′)∈ 𝑞

𝑗′𝑘′ 𝑚𝑚

𝑗

Where ℎ

̂

𝑗

𝑗𝑘 is the  EW-MMSE estimate of ℎ𝑗𝑘 ,  [15-17].
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𝑗

1

𝑗   𝑝

 

 

 

 

 

ℎ̂𝑗𝑘 =

𝑦

(9) 

√𝑝

𝑗𝑘

𝑗𝑘𝜏𝑝

𝑗

Where ℎ̂

𝑗

𝑗𝑘  is  the   LS  estimate  of ℎ𝑗𝑘 , the  channel  estimation  quality  is  measured  by  the  mean  square  error  (MSE),  MSE  =

𝑗

2

‖ℎ 𝑗

𝑗𝑘

−  ℎ̂𝑗𝑘 ‖  [15-16].

The  matrices  in  transmit  precoding  may  be  defined  by  using  the  transmit  powers  𝑃𝐽  of  all  UEs  in  jth  cell  from  BS   j  given  in equation (10a)

𝑃𝐽 = 𝑑𝑖𝑎𝑔 (𝑃𝑗1, 𝑃𝑗2, 𝑃𝑗3 … 𝑃𝑗𝑘)  𝜖 ℂ𝐾×𝐾                                    (10a) Subscripts  of  estimated  channel matrix  𝐻

̂𝑗𝑙 in Eqn. (10b) denote the channel connection between BS j and all the UEs in cell l with the MIMO DL channel. 

𝑗

𝐻

̂𝑗𝑙 = ℎ̂𝑙𝑘                                                                                        (10b) B.  Downlink MMSE precoder 

i. Single-cell minimum mean squared error (S-MMSE): S-MMSE may be expressed in equation (11a) as obtained in [15].

−1

𝐾𝑗

𝐾

𝐿

𝑙

𝐻

𝐹𝑆−𝑀𝑀𝑆𝐸

𝑗

𝑗

𝐽

=   (𝐻

̂𝑗𝑗𝑃𝐽(𝐻̂𝑗𝑗) + ∑ 𝑝𝑗𝑖𝐶  + ∑ ∑ 𝑝

+   𝜎2𝐼 )

𝐻

̂

𝑗𝑖

𝑙𝑖𝑅𝑙𝑖

𝑀

𝑗𝑗 𝑃𝐽             (11a) 

𝑖=1

𝑙=1 𝑖=1

𝑙≠𝑗

ii. Multi-cell minimum mean squared error (M-MMSE): M-MMSE may be expressed in equation (11b) as obtained in [15].

−1

𝐿

𝐾

𝐿

𝑙

𝐻

𝐹𝑀−𝑀𝑀𝑆𝐸

𝑗

𝐽

=   (∑ 𝐻

̂𝑗𝑙 𝑃𝑙(𝐻̂𝑗𝑙) + ∑ ∑ 𝑝𝑙𝑖𝐶 + 𝜎2𝐼 ) 𝐻̂

𝑙𝑖

𝑀

𝑗𝑗𝑃𝐽             (11b) 

𝑙=1

𝑙=1 𝑖=1

Pl is transmitting powers of all UEs from BS j in cell  l.



C.  Power Precoding Normalization Techniques

The transmitted signal 𝑠𝑗 in equation (1) may be expressed in [15] and [17] as: 𝑘𝑗

𝑠𝑗 =   ∑ 𝑤𝑗𝑖 𝑑𝑗𝑖                                                                                   (12a) 

𝑖=1

The transmitted  signal  𝑠𝑗 from  jth  BS antennas  M in  a  cell  consist  of  multiple  information  data  signals  𝑑𝑗𝑖  that  are  transmitted.

The transmitted signals make use of different precoding vectors 𝑤𝑗𝑖from jth BS (e.g., different spatial directivity). If there are K

UEs,  a  unit  power  DL  data  vector  𝑑𝑗𝑖 = [𝑑𝑗1, … , 𝑑𝑗𝐾]from  jth  BS  would  be  required  for  K  different  UEs  in  each  cell.  The transmitted  signal  𝑠𝑗  may  be  obtained  by  multiplying  the  precoding  vector  𝑤𝑗𝑖  and  the  information  DL  data  vectors 𝑑𝑗𝑖.  The precoding vector 𝑤𝑗𝑖 determines the direction of the spatial directivity of the DLdata signals 𝑑𝑗𝑖, while the squared norm  ||𝑤𝑗𝑖||2

determines the associated transmit power.

𝑊 = [𝑤𝑗1, … , 𝑤𝑗𝐾]                                                                                    (12b) Where the precoding matrix 𝑊𝜖 ℂ𝑀×𝐾is defined as the M⤫K-dimensional precoding matrix and precoding vectors  𝑤𝑗𝑖𝜖 ℂ𝑀×1are M

defined  as  the  M-dimensional  precoding  vectors  assigned  to  kth  different  UEs.  Massive  MIMO  usually  means  that  >  1 and K

M≫K. When the precoding vectors are selected, we need to ensure that too much transmit power is not used. Let the maximum downlink transmit power be  P,  P ( PJ = [𝑃

(

𝑗1 , 𝑃𝑗2, 𝑃𝑗3 … 𝑃𝑗𝐾 ]T), the data vectors 𝑑𝑗𝑖  =  𝑁𝐶 0, 𝑃) be  modeled as a circularly symmetric complex Gaussian distribution having circular symmetry and 𝑁𝐶 with zero mean. The [𝑃𝑗1, 𝑃𝑗2, 𝑃𝑗3 … 𝑃𝑗𝐾] are allocated from the jth BS to UEs in each cell and the squared Frobenius norm of  W  should equal the maximum transmit power [1-6] as expressed in equation (12c)

||𝑊||2𝐹 = 𝑃                                                                                               (12c) There are two types of power precoding normalization techniques viz: vector normalization (VN) and matrix normalization (MN)

[1-6].  The  major  idea  is  to  begin  from  an  arbitrarily  selected  precoding  matrix  𝐹 = [𝑓𝑗1, … , 𝑓𝑗𝐾]  and  then  it  is  adapted  into satisfying the power constraint.
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1) 

Vector  normalization  (VN)  technique:  In this technique, we  first normalize  each  column  in matrix   F to  have  a  unit norm  and  all  the  entries  are  scaled  with  the  same  square  root  ratio  of  maximum  transmit  power   P  to  number  of  UEs   K.  This satisfies equation (12c). We express the vector normalization technique as 𝑃

𝑓

𝑓

𝑊 = √ [ 1

…

𝐾

]                                                  (13a)

𝐾 ||𝑓 |

|

1 |

||𝑓𝐾 |

One  key  merit  is  that  the  computation  of  the  precoding  vectors  at  BS  j  needs  only  MK  complex  multiplications,  which  are required to compute ||𝑓𝑘|| in equation (13a) for every UE [16].

 

2) 

Matrix  normalization  (MN)  technique:  In  this  technique,  we  select  any  precoding  matrix  F  and  all  the  entries  are scaled  with  the  square  root  of  maximum  transmit  power   P  which  is  used  to  satisfy  (12c).  We  express  matrix  normalization technique as

√𝑃

𝑊 =

𝐹                                                                                                     (13b)

||𝐹||𝐹

The  computation  of  the  precoding matrix at  BS  j  requires MK  complex  multiplications,  which are needed  to  compute  ||𝐹||𝐹in equation (13b) for all UEs at once [3].

 

III.   Downlink SINR, Downlink Spectral Efficiency (DL SE), and Network throughput The expression for the effective downlink SINR as given in [15-17] is expressed in equation (14). 

2
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The expectation 𝔼{} is determined with reference to channel realizations. Therefore, a downlink SE maximizes the SINR in Eqn.

(14) for a given channel estimate. The downlink SE is expressed in equation (15) as given in [15-17]: 

𝜏

𝑆𝐸𝐷𝐿

𝑐 − 𝜏𝑝

𝐷𝐿)

𝑗𝑘 =

log

(15)

𝜏

2( 1 +   𝑆𝐼𝑁𝑅𝑗𝑘

𝑐

𝝉𝒄−𝝉𝒑

The term

 is the prelog factor that represents the portion of samples per coherence interval that are used for downlink data 𝝉𝒄

transmission. The network throughput (bits/s) is obtained by the multiplication of operational bandwidth (Hz) and SE (bits/s/Hz).

𝑏𝑖𝑡

𝑏𝑖𝑡

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡  (

) = 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ (𝐻𝑧) × 𝑆𝐸𝐷𝐿 ( 𝑠 )           (16)

𝑠

𝑗𝑘

𝐻𝑧

IV.    Simulation, Results and Discussion 

A square pattern network layout is used in [15-17]. The 16-cell setup is utilized and each cell has an area of 1 km2. Inter-cell and intra-cell  interference  received  by  all  the  base  stations  are  the  same  in  all  directions.  The  value  of  the  large-scale  fading coefficient, path loss factor and standard deviation, operating bandwidth is as given in [15]. A  100mW downlink transmit power was allocated to each UE in a particular cell and the number of UEs per cell given as 10 [15]. The UEs were equally distributed in each  cell.  A  channel  characterized  by  uniform  local  scattering  (ULA)  and  correlated  Rayleigh  fading  with  a  value  of  angular standard deviation (ASD) of 10˚ (degree) was used. The downlink throughput, SE, and SINR/SNR were computed and simulated to obtain numerical results. The simulation parameters are tabulated in table 1.

Table 1: Simulation Parameters 

Parameter 



Value 

Network layout 

Square pattern (wrap-around)

Cell area

1km ⤫ 1km

Number of BS antennas

100

Number of Cells

16
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Number of UEs (or users) in each cell

10

Communication Bandwidth

B = 20 MHz

DL transmit power

100mW (-10dB)

Noise Figure

7dB

Noise Variance

−174 + 10 log10 𝐵 +  Noise Figure

Pathloss exponent

3.76

Shadow fading (standard deviation)

10

Distance between UE k in cell l and BS j

𝑑𝑗

𝑙𝑘

Average channel gain using the large-scale fading  −35.3 − 37.6 log 𝑗

10 𝑑

 

𝑙𝑘

model

Pilot reuse factor f

1, 2,4 or 16

Total coherence block length (τc)

200

Number of  pilot sequences (τp)

f K 

Channel Model

Uniform  local  scattering  model  and  correlated

Rayleigh fading channel

Angular standard deviation

10˚(degree)

Number of channel realizations

10

Number of random setup

1

-Impact on Network throughput 

Network throughput is one of the vital metric to evaluate network performance in mMIMO networks. This metric is expressed in equation  (16)  and  measures  the  quality  of  service  (QoS)  of  the  network.  In  order  to  examine  the  impact  of  throughput  on  the performance  of  the  compared  precoders,  the  three  different  estimators  discussed  in  section  (II)A  were  introduced  into  the simulation as shown in figures 1 –3.

 

Figure 1: Throughput vs. Number of antennas (M) for K = 10 UEs and f = 4 with the MMSE estimator.
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Figure  1  depicts  the  average  DL  sum  throughput  plotted  against  the  number  of  antennas  with  MMSE  channel  estimates  using power normalization  when the pilot reuse factor is 4 ( f = 4). M-MMSE with vector normalization (VN) has the highest average sum  throughput  for  any  number  of  antennas  and  passes  from  3.10⤫108  bit/s  to  12.37⤫108  bit/s  as  the  number  of  antenna increases.  M-MMSE  with  matrix  normalization  (MN)  has  the  lowest  average  sum  throughput  for  any  number  of  antennas.  S-MMSE  with  vector  normalization  (VN)  performs  better  than  S-MMSE  with  matrix  normalization  (MN).  The  downlink throughput comparison of the two basic linear precoding techniques with MMSE channel estimation and pilot reuse factors of 1, 2, 4, and 16 under power normalization are presented in table 2. The values of the  precoding techniques when f = 4 are in bold face in table 2

Table 2: Downlink throughput (bit/s) for MMSE Channel Estimator with M=100, K =10, and different pilot reuse factor (f =1, 2, 4, and 16).

MMSE Channel Estimates for M = 100 



Precoding 

Pilot reuse factor (Throughput) 



technique

f = 1 

f = 2 

f = 4 

f = 16 

M-MMSE-MN

7.634E+08

7.018E+08

6.094E+08 

1.623E+08

M-MMSE-VN

1.397E+09

1.357E+09

1.237E+09 

3.337E+08

S-MMSE-MN

8.296E+08

7.767E+08

6.854E+08 

1.634E+08

S-MMSE-VN

1.036E+09

9.454E+08

8.27E+08 

2.271E+08

We compare the percentage performance of precoding techniques using figure 1 and table 2 with respect to the method applied in

[15].

8.27E+08

S-MMSE-VN =

× 100 = 66.86% of the sum throughput generated by M-MMSE-VN.

1.237E+09

6.854E+08

S-MMSE-MN =

× 100 = 55.40% of the sum throughput generated by M-MMSE-VN.

1.237E+09

6.094E+08

M-MMSE-MN =

× 100 = 49.26% of the sum throughput generated by M-MMSE-VN.

1.237E+09

The M-MMSE-MN technique gives 50.74% lower throughput than M-MMSE-VN, but 6.14% lower throughput than  S-MMSE-MN and 17.6% lower throughput than S-MMSE-VN.

 

Figure 2: Throughput vs. Number of antennas (M) for K = 10 UEs and f = 4 with the EW-MMSE estimation.
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Figure 2 depicts the average DL sum throughput plotted against the number of antennas with the EW-MMSE Channel Estimates using  power  normalization  when  the  pilot  reuse  factor  is  4  ( f  =  4).  M-MMSE  with  vector  normalization  (VN)  has  the  highest average sum throughput for any number of antennas and passes from 3.93⤫108 bit/s to 13.24⤫108 bit/s as M increases while M-MMSE with matrix normalization (MN) has the lowest average sum throughput for any number of antennas and passes from 2.87

⤫108 bit/s to 7.12⤫108 bit/s as the number of antenna increases. S-MMSE with vector normalization (VN) performs better than S-MMSE with matrix normalization (MN). MN produces the same precoding weight among UEs by normalizing over all UEs while VN  conducts  precoding  for  each  UE  individually,  which results  in  different  throughput among  UEs.  The  downlink  throughput comparison of the two basic linear precoding techniques with EW-MMSE channel estimation and pilot reuse factor of 1, 2, 4 and 16 under power normalization are presented in table 3 with the values of the precoding techniques when f = 4 in bold face.

Table 3: Downlink throughput (bit/s) for EW-MMSE Channel Estimator  with M=100, K =10, and different pilot reuse factor (f

=1, 2, 4, and 16).

EW-MMSE Channel Estimates for M = 100 



Precoding 

Pilot reuse factor (Throughput) 



technique

f = 1 

f = 2 

f = 4 

f = 16 

M-MMSE-MN

7.517E+08 

7.963E+08

7.115E+08 

1.604E+08

M-MMSE-VN

1.167E+09 

1.379E+09

1.324E+09 

3.407E+08

S-MMSE-MN

8.395E+08 

8.636E+08

7.6E+08 

1.651E+08

S-MMSE-VN

1.118E+09 

1.128E+09

9.699E+08 

2.36E+08

We compare the percentage performance of precoding techniques using figure 2 and table 3 in respect to the method applied in

[15].

9.699E+08

S-MMSE-VN =

× 100 = 73.26% of the sum throughput generated by M-MMSE-VN.

1.324E+09

7.6E+08

S-MMSE-MN =

× 100 = 57.40% of the sum throughput generated by M-MMSE-VN.

1.324E+09

7.115E+08

M-MMSE-MN =

× 100 = 53.74% of the sum throughput generated by M-MMSE-VN.

1.324E+09

The S-MMSE-VN technique gives 26.74% lower throughput than M-MMSE-VN, but 15.86% higher throughput than S-MMSE-MN  and  19.52%  higher  throughput  than  M-MMSE-VN.    For  example,  the  sum  throughput  of  M-MMSE  precoding  with  VN

(when M = 20) achieves the same performance as M-MMSE precoding with MN (when M = 70). Figures 1 and 2 depict that the number of antennas M required to achieve a target sum throughput in MMSE and EW-MMSE channel estimates using M-MMSE

precoding technique with matrix normalization (MN) is higher than the one required by vector normalization (VN) by a factor of 3½.

 

Figure 3: Throughput vs. Number of antennas (M) for K = 10 UEs and f = 4 with LS estimation.
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Figure 3 presents the average DL sum throughput plotted against the number of antennas with LS channel estimates using power normalization  when  the  pilot  reuse  factor  is  4  ( f  =  4).  M-MMSE  with  vector  normalization  (VN)  has  the  highest  average  sum throughput  from the  point  when the number  of  antennas  is  greater than  or  equal  to  40  (M  ≥  40)  while  M-MMSE  with matrix normalization (MN) has the lowest average sum throughput from the point when the number of antennas is less than or equal to 40  (M  ≤  40).  S-MMSE  with  vector  normalization  (VN)  and  matrix  normalization  (MN)  has  the  same  sum  throughput  value, which ranges from 3.51⤫107 bit/s to 6.07⤫107 bit/s as the number of antenna increases. The downlink throughput comparison of the  two  basic  linear  precoding  techniques  with  LS  channel  estimation  and  pilot  reuse  factor  of  1,  2,  4  and  16  under  power normalization are presented in table 4 with the values of the precoding techniques when f = 4 in bold face.

Table 4: Downlink throughput (bit/s)  for LS Channel Estimator with M=100, K =10, and different pilot reuse factor (f =1, 2, 4, and 16).

LS Channel Estimates for M = 100 



Precoding 

Pilot reuse factor (Throughput) 



technique

f = 1 

f = 2 

f = 4 

f = 16 

M-MMSE-MN

1.759E+07 

3.384E+07

6.223E+07 

1.528E+08

M-MMSE-VN

1.762E+07 

3.4E+07

6.297E+07  

3.001E+08

S-MMSE-MN

1.767E+07 

3.32E+07

6.065E+07 

1.471E+08

S-MMSE-VN

1.768E+07 

3.32E+07

6.079E+07  

2.106E+08

We compare the percentage performance of precoding techniques using figure 3 and table 3 by applying the methods used in [15].

6.079E+07

S-MMSE-VN =

× 100 = 96.53% of the sum throughput generated by M-MMSE-VN.

6.297E+07

6.065E+07

S-MMSE-MN =

× 100 = 96.32% of the sum throughput generated by M-MMSE-VN.

6.297E+07

6.223E+07

M-MMSE-MN =

× 100 = 98.82% of the sum throughput generated by  M-MMSE-VN. The M-MMSE-MN technique 6.297E+07

gives 1.18% lower throughput than M-MMSE-VN, but 2.5% higher throughput than S-MMSE-MN and 2.26% higher throughput than S-MMSE-VN.

-Impact on SE 

This  metric  is  expressed  in  equation  (15),  we  simulated  the  SE  by  increasing  the  number  of  UEs  in  the  cells,  to  evaluate  the performance of the network. Figures 4 - 6 compares the effect of the different estimators on the SE metric.

 

Figure 4: Downlink SE vs. Number of UEs (K) for M = 100 antennas and f = 4 with MMSE estimation.
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Figure  4  shows  the  average  DL  sum  SE  as  a  function  of  the  number  of  UEs  with  MMSE  channel  estimates  using  power normalization  when  the  pilot  reuse  factor  is  4  ( f  =  4).  M-MMSE  and  S-MMSE  with  vector  normalization  (VN)  have  higher average sum SE than S-MMSE and M-MMSE with matrix normalization (MN) when the number of UEs is more than 1 (UE > 1).This is because of the expectation 𝔼 {√𝑷}  which implies that the same transmit power is assigned to UEs in VN.

𝑲

 

Figure 5: Downlink SE vs. Number of UEs (K) for M = 100 antennas and f = 4 with EW-MMSE estimation.

Figure  5  shows  the  average  DL  sum  SE  as  a  function  of  the  number  of  UEs  with  EW-MMSE  channel  estimates  using  power normalization  when  the  pilot  reuse  factor  is  4  ( f  =  4).  M-MMSE  and  S-MMSE  with  vector  normalization  (VN)  have  higher average sum SE than S-MMSE and M-MMSE with matrix normalization (MN) when the number of UEs is more than 1 (UE > 1).

For UE > 1, the expectation becomes  𝔼 { √𝑷 }, hence different transmit powers are assigned to UEs in MN. For example, in the

||𝑭||𝑭

above figures, the sum SE of M-MMSE precoding with VN (when K = 3) achieves the same performance as M-MMSE precoding with MN (when K = 5). Figures 4 and 5 show that the number of UEs K required to achieve a target sum SE in MMSE and EW-MMSE channel estimates using M-MMSE precoding technique with vector normalization (VN) is smaller than the one required by matrix normalization (MN) by a factor of 1½ (5/3).

 

Figure 6: Downlink SE vs. Number of UEs (K) for M = 100 antennas and f = 4 with LS estimation.

Figure  6  presents  the  average  DL  sum  SE  as  a  function  of  the  number  of  UEs  with  LS  channel  estimates  using  power normalization  when the pilot reuse factor is 4 ( f = 4). M-MMSE with vector normalization (VN) performs better than S-MMSE

with vector/matrix normalization and M-MMSE with matrix normalization (MN). It is observed from  figures 4, 5, and 6 that as the number of UEs (K) per cell rises, the average sum SE rises. In general, it is observed that M-MMSE with vector normalization (VN)  precoding  technique  has  the  highest  SE  with  an  increase  in  UEs  when  compared  to  the  S-MMSE  with  vector/matrix normalization and M-MMSE with matrix normalization (MN).VN performs precoding for each UEs separately, which generates different SE among UEs. In contrast, MN produces the same precoding weight among UEs by normalizing over all UEs.
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-Impact on SNR 

The signal-to-noise ratio (SNR) as a performance metric in the mMIMO networks generally depends on three parameters namely the transmit power, channel gain, and noise power [16]. The SNR in this case is used only to evaluate the transmit power of the BS  where  the  other  parameters  are  normalized  to  unity.  Figures  7  -  9  compares  different  SNR  values  resulting  from  the  three different channel estimates.

 

Figure 7: Downlink SE vs. Signal to Noise [dB] for M = 100 antennas and f = 4 with MMSE estimation.

Figure 7 shows the average DL sum SE as a function of SNR with MMSE Channel Estimates using power normalization  when the  pilot  reuse  factor  is  4  ( f  =  4).  M-MMSE  with  vector  normalization  (VN)  has  a  superior  performance  than  S-MMSE  with vector/matrix  normalization  and  M-MMSE  with  matrix  normalization  (MN).  There  is  a  finite  increase  in  the  SE  of  M-MMSE

with vector and matrix normalization at SNR from -15 dB to 40dB. The S-MMSE-VN has a better SE than S-MMSE-MN at SNR

of -15dB to 20 dB. At SNR ≥ 40 dB, the slope of the graph becomes relatively steadier up to the SE value of 60bit/s/Hz. 

 

Figure 8: Downlink SE vs. Signal to Noise [dB] for M = 100 antennas and f = 4 with EW-MMSE estimation.

Figure 8 gives the average DL sum SE as a function of SNR with EW-MMSE channel estimates using power normalization when the  pilot  reuse  factor  is  4  ( f  =  4).  M-MMSE  with  vector  normalization  (VN)  has  a  better  performance  than  S-MMSE  with vector/matrix normalization and M-MMSE with matrix normalization (MN).  There is a finite increase in SE of  M-MMSE with vector and matrix normalization at SNR from -15 dB to 40dB. The S-MMSE with vector normalization has a better performance www.ijltemas.in                                                                                                                                                                  Page  182
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than  S-MMSE  with  matrix  normalization  (MN)  at  low  SNR  from  -15dB  to  20  dB  and  after  SNR  ≥  20  dB  the  slope  becomes relatively steadier at SE value of 48bit/s/Hz.

 

Figure 9: Downlink SE vs. Signal to Noise [dB] for M = 100 antennas and f = 4 with LS estimation.

Figure  9  shows  the  average  DL  sum  SE as a  function  of  SNR  with  LS  channel  estimates  using  power normalization  when the pilot reuse factor is 4 ( f = 4). There is a finite increase in SE of M-MMSE with vector/ matrix normalization and S-MMSE with vector/  matrix  normalization  at  low  SNR  from  -15  dB  to  10dB.  M-MMSE  with  vector  and  matrix  normalization  has  a  better performance  than  S-MMSE  with  vector  and  matrix  normalization  at  high  SNR  from  20dB  to  45dB.  The  complex  analysis associated with M-MMSE is higher than that of S-MMSE because of inter-cell interference suppression. In general, figures 7, 8, and 9  show  that  the  M-MMSE-VN  precoding  technique has  better  performances  when  compared to  the  M-MMSE-MN  and  S-MMSE-VN/S-MMSE-MN. The M-MMSE-VN precoding technique performs best at both high and low SNR.  From figures 7, 8, and 9 it can be inferred that an increase in the transmit power can boost the SE of massive MIMO networks.  This is because as transmit power of the BS antennas increases, the sum SE increases.

-Impact on SINR 

SINR  is  a  performance  metric  used  to  measure  the  desired  signal  to  interference  plus  noise  ratio.  This  metric  is  expressed  in equation (16). The SINR was simulated by increasing the number of antennas in the mMIMO network. The results for the three different estimators are presented in figures 10 – 12.

 

Figure 10: Average SINR vs. Number of antennas (M) for K = 10 UEs and f = 4 with MMSE estimation.
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Figure  10  presents  the  average  SINR  as  a  function  of  the  number  of  antennas  with  MMSE  channel  estimates  using  power normalization when the pilot reuse factor is 4 ( f = 4). M-MMSE-VN has the highest SINR for any number of antennas while M-MMSE-MN and S-MMSE-MN performed poorly  because 𝔼 { 𝑭 } is unknown and produces the  same precoding weight among

||𝑭||𝑭

UEs by normalizing over all UEs. 

 

Figure 11: Average SINR vs. Number of antennas (M) for K = 10 UEs and f = 4 with EW-MMSE estimation.

 

Figure 12: Average SINR vs. Number of antennas (M) for K = 10 UEs and f = 4 with LS estimation.

Figure  11  presents  the  average  SINR  plotted  against  the  number  of  antennas  with  the  MMSE  channel  estimates  using  power normalization  when the  pilot reuse  factor is 4  ( f =  4).  M-MMSE  with  vector normalization  (VN) has the highest  SINR  for any number  of  antennas  while  M-MMSE  and  S-MMSE  with  matrix  normalization  (MN)  performed  poorly.  Figure  12  shows  the average SINR plotted against the number of antennas with LS channel estimates using power normalization when the pilot reuse factor is 4 ( f = 4). S-MMSE with vector/matrix normalization performs better than M-MMSE with vector/matrix normalization when the number of antennas is less than 50 (M < 50). In Figure 10, 11, and 12, the signal to interference plus noise ratio (SINR) increases linearly with the number of base station antennas and does not saturate as the number of base station antennas tend to infinity.
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V.  Conclusion 

Massive  MIMO  technology  is  one  of  the  key  enabling  technologies  for  new  and  future  generation  wireless  communication networks.  It  can  increase the throughput and  SE.  Massive MIMO has  been  used  in this  work  to  show  the  power normalization effects on linear precoding techniques at the BS and on channel estimation via a downlink. The above figures show throughput, SE, and SNR (or SINR) performance metrics with two basic precoding techniques such as M-MMSE and S-MMSE using vector normalization  (VN)  and  matrix  normalization  (MN)  respectively.  MMSE  and  EW-MMSE  estimators  produced  the  highest average  sum  SEs  while  LS  estimator  produced  the  lowest  average  sum  SEs.  There  is  a  significantly  large  percentage  loss  of average sum SE if the LS estimator is used. LS estimator performs poorly when compared to EW-MMSE and MMSE estimators.

The SE, throughput, and SINR (or SNR) are not much improved even if the pilot reuse factor f is increased.  Numerical results showed  that  M-MMSE-VN  and  S-MMSE-VN  are  effective  at  achieving  higher  SE,  throughput,  and  SNR  (or  SINR)  than  M-MMSE-MN and S-MMSE-MN. However, transmit power is fairly assigned to UEs in MN than in VN for practical scenarios. In future  work,  we  will  consider  the  issue  of  using  power  normalization  on  non-linear  precoding  techniques  with  optimization algorithms to solve different power allocation issues.
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