INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue VIII, August 2024
www.ijltemas.in Page 140
19. de Nigris, S., Gomez-Gonzalez, E., Gomez, E., Martens, B., Portela, M. I., Vespe, M., ... & Junklewitz, H.
(2020). Artificial Intelligence and Digital Transformation: early lessons from the COVID-19 crisis. M. Craglia (Ed.).
Luxemburgo: Publications Office of the European Union.
20. Dinello, D. (2006). Technophobia! science fiction visions of posthuman technology. University of Texas Press.
21. Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint
arXiv:1702.08608.
22. Etzioni, A., & Etzioni, O. (2017). Incorporating ethics into artificial intelligence. The Journal of Ethics, 21, 403-418.
23. Eubanks, V. (2018). Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. St. Martin's
Press.
24. Ford, M. (2018). Architects of Intelligence: The truth about AI from the people building it. Packt Publishing Ltd.
25. Floridi, L. (2014). The Fourth Revolution: How the Infosphere is Reshaping Human Reality. Oxford University Press.
26. Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., ... & Schafer, B. (2018). AI4People—an
ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds and Machines,
28(4), 689-707.
27. Ford, M. (2018). Architects of Intelligence: The truth about AI from the people building it. Packt Publishing Ltd.
28. George, A. S., George, A. H., & Martin, A. G. (2023). ChatGPT and the future of work: a comprehensive analysis of
AI'S impact on jobs and employment. Partners Universal International Innovation Journal, 1(3), 154-186.
29. Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., & Kagal, L. (2018). Explaining explanations: An overview
of interpretability of machine learning. In 2018 IEEE 5th International Conference on data science and advanced
analytics (DSAA) (pp. 80-89). IEEE.
30. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
31. Groth, O. (2023). The Great Remobilization: Strategies and Designs for a Smarter Global Future. MIT Press.
32. Guidance, W. H. O. (2021). Ethics and governance of artificial intelligence for health. World Health Organization.
33. Harari, Y. N. (2017). Reboot for the AI revolution. Nature, 550(7676), 324-327.
34. Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence,
1(9), 389-399.
35. Kelly, K. (2008). Out of control. The New Biology of Machines, Social Systems, and the Economic World. NY: Basic
Books, 528.
36. Koppell, J. G. (2010). World rule: Accountability, legitimacy, and the design of global governance. University of
Chicago Press.
37. Kotsis, K. T. (2024). The Scientific Literacy Enables Policymakers To Legislate On Artificial Intelligence. European
Journal of Political Science Studies, 7(1).
38. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
39. Lobschat, L., Mueller, B., Eggers, F., Brandimarte, L., Diefenbach, S., Kroschke, M., & Wirtz, J. (2021). Corporate
digital responsibility. Journal of Business Research, 122, 875-888.
40. Lu, Q., Zhu, L., Xu, X., Whittle, J., Zowghi, D., & Jacquet, A. (2024). Responsible AI pattern catalogue: A collection of
best practices for AI governance and engineering. ACM Computing Surveys, 56(7), 1-35.
41. Maynard, A. (2020). Future Rising: A Journey from the Past to the Edge of Tomorrow. Mango Media Inc..
42. Marcus, G., & Davis, E. (2019). Rebooting AI: Building Artificial Intelligence We Can Trust. Pantheon.
43. Mazzini, G. (2019). A system of governance for artificial intelligence through the lens of emerging intersections between
AI and EU law. Digital revolution–new challenges for law.
44. McCarthy, J. (2007). From here to human-level AI. Artificial Intelligence, 171(18), 1174-1182.
45. Miao, F., Holmes, W., Huang, R., & Zhang, H. (2021). AI and education: A guidance for policymakers. UNESCO
Publishing.
46. Moskowitz, J. M. (2019). We Have No Reason to Believe 5G Is Safe Scientific American. Scientific American.
47. Mulhall, D. (2010). Our molecular future: How nanotechnology, robotics, genetics and artificial intelligence will transfor
M our world. Prometheus Books.
48. Njoh Mouellé, E. (2018). Transhumanism, science Merchants and the Future of Man.
49. Njoh Mouellé, E. (2018). Transhumanism, science Merchants and the Future of Man.
50. Noble, S. U. (2018). Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press.
51. Norman, D. (2013). The design of everyday things: Revised and expanded edition. Basic books.
52. O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown
Publishing Group.
53. Opoku-Mensah, E., Abilimi, A. C., & Amoako, L. (2013). The Imperative Information Security Management System
Measures in the Public Sectors of Ghana. A Case Study of the Ghana Audit Service. International Journal on Computer
Science and Engineering (IJCSE), 760-769.
54. Opoku-Mensah, E., Abilimi, C. A., & Boateng, F. O. (2013). Comparative analysis of efficiency of fibonacci random
number generator algorithm and gaussian Random Number Generator Algorithm in a cryptographic system. Comput.
Eng. Intell. Syst, 4, 50-57.
55. Qorbani, M. (2020). Humanity in the Age of AI: How to Thrive in a Post-Human World. Bloomsberry.