INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIII, Issue IX, September 2024
www.ijltemas.in Page 85
methods and 3 ‑ layer CNN. Scientific Reports, (0123456789), 1–10. https://doi.org/10.1038/s41598-024-52823-9
34. Kibriya, H., Amin, R., Alshehri, A. H., Masood, M., Alshamrani, S. S., & Alshehri, A. (2022). A Novel and Effective Brain
Tumor Classification Model Using Deep Feature Fusion and Famous Machine Learning Classifiers. 2022.
35. Kitsios, F., Kamariotou, M., & Syngelakis, A. I. (2023). applied sciences Recent Advances of Artificial Intelligence in
Healthcare : A Systematic Literature Review.
36. Krishnapriya, S., & Karuna, Y. (2017). Pre-trained deep learning models for brain MRI image classification.
37. Kuraparthi, S., Reddy, M. K., Sujatha, C. N., Valiveti, H., & Duggineni, C. (2021). Traitement du Signal Brain Tumor
Classification of MRI Images Using Deep Convolutional Neural Network. 38(4), 1171–1179.
38. Lan, Y. (2023). Potential roles of transformers in brain tumor diagnosis and treatment. (June).
https://doi.org/10.1002/brx2.23
39. Mangla, R. (2022). Brain tumor detection and classification by MRI images using deep learning techniques. International
Journal of Health Sciences, 6(March), 5783–5790.
40. Menze, B. H., Jakab, A., Bauer, S., Kalpathy-cramer, J., Farahani, K., Kirby, J., … Prastawa, M. (2015). The Multimodal
Brain Tumor Image Segmentation Benchmark ( BRATS ). 34(10), 1993–2024. https://doi.org/10.1109/TMI.2014.2377694
41. Miah, J., Cao, D. M., Sayed, A., Taluckder, S., Haque, S., & Mahmud, F. (2024). Advancing Brain Tumor Detection : A
Thorough Investigation of CNNs , Clustering , and SoftMax Classification in the Analysis of MRI Images .
42. Nalepa, J., Marcinkiewicz, M., & Kawulok, M. (2019). Data Augmentation for Brain-Tumor Segmentation : A Review.
13(December), 1–18. https://doi.org/10.3389/fncom.2019.00083
43. Naveen, V. A., Sudeep, N. R., Sharath, S. B., Sakhare, V. K., & Yadav, Y. (2021). Brain Tumor Detection Using Machine
Learning Approach. (07), 1640–1648.
44. Raghavapudi, H., Singroul, P., & Kohila, V. (2021). Brain Tumor Causes, Symptoms, Diagnosis and Radiotherapy
Treatment. (January). https://doi.org/10.2174/1573405617666210126160206
45. Rasool, M., Ismail, N. A., Boulila, W., Ammar, A., Samma, H., Yafooz, W. M. S., & Emara, A. M. (2022). A Hybrid Deep
Learning Model for Brain Tumour Classification.
46. Reszke, M., & Smaga, Ł. (2023). Machine learning methods in the detection of brain tumors. 60(2), 125–148.
https://doi.org/10.2478/bile-2023-0009
47. Saad, G., Suliman, A., Bitar, L., & Bshara, S. (2023). Developing a hybrid algorithm to detect brain tumors from MRI
images. Egyptian Journal of Radiology and Nuclear Medicine. https://doi.org/10.1186/s43055-023-00962-w
48. Saeedi, S., Rezayi, S., Keshavarz, H., & Kalhori, S. R. N. (2023). MRI ‑ based brain tumor detection using convolutional
deep learning methods and chosen machine learning techniques. BMC Medical Informatics and Decision Making, 6, 1–17.
https://doi.org/10.1186/s12911-023-02114-6
49. Sarkar, A., Alahe, M. A., & Ahmad, M. (2023). An Effective and Novel Approach for Brain Tumor Classification Using
AlexNet CNN Feature Extractor and Multiple Eminent Machine Learning Classifiers in MRIs. 2023.
50. Shohag, A., Aktar, R., Science, N., & Imtiaz, M. H. (2015). Design and Development of a Brain Tumor Detection System
Based on MRI. (October 2019).
51. Suchetha, N. V, Bhat, A., Hegde, A., Mallikarjun, M., & Karthik, S. R. (2023). Brain Tumor Detection Using a Deep
Learning Model. 6(11), 801–805.
52. Susan M. Chang, M., Erin Dunbar, M., Virginia Dzul-Church, M., Laura Koehn, M., & Margaretta S. Page, RN, M. (2015).
End-of-Life Care for Brain Tumor Patients End-of-Life Care for Brain Tumor Patients.
53. Swarup, C., Singh, K. U., Kumar, A., & Pandey, S. K. (2023). Brain tumor detection using CNN , AlexNet & GoogLeNet
ensembling learning approaches. 31(March), 2900–2924. https://doi.org/10.3934/era.2023146
54. Tasci, E., Zhuge, Y., Kaur, H., Camphausen, K., & Krauze, A. V. (2022). Hierarchical Voting-Based Feature Selection and
Ensemble Learning Model Scheme for Glioma Grading with Clinical and Molecular Characteristics.
55. Troyanskaya, O., Trajanoski, Z., Carpenter, A., Thrun, S., Razavian, N., & Oliver, N. (2020). Artificial intelligence and
cancer. Nature Cancer, 1(February), 149–152. https://doi.org/10.1038/s43018-020-0034-6
56. Vermeulen, C., Kester, L., Kranendonk, M. E. G., Wesseling, P., Verburg, N., Hamer, P. W., … Ridder, J. (2023). Ultra-fast
deep-learned CNS tumour classification during surgery. 622(February). https://doi.org/10.1038/s41586-023-06615-2
57. Vimala, B. B., Srinivasan, S., Mathivanan, S. K., Jayagopal, P., & Dalu, G. T. (2023). Detection and classification of brain
tumor using hybrid deep learning models. Scientific Reports, 1–17. https://doi.org/10.1038/s41598-023-50505-6
58. Williams, J., Appiahene, P., & Timmy, E. (2023). Informatics in Medicine Unlocked Detection of anaemia using medical
images : A comparative study of machine learning algorithms – A systematic literature review. Informatics in Medicine
Unlocked, 40(May), 101283. https://doi.org/10.1016/j.imu.2023.101283
59. Xie, Y., Zaccagna, F., Rundo, L., Testa, C., Agati, R., Lodi, R., … Tonon, C. (2022). Convolutional Neural Network
Techniques for Brain Tumor Future Perspectives.
60. Xu, C., Peng, Y., Zhu, W., Chen, Z., Li, J., Tan, W., … Chen, X. (2022). An automated approach for predicting glioma
grade and survival of LGG patients using CNN and radiomics. (August), 1–12. https://doi.org/10.3389/fonc.2022.969907