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Abstract:  The  dynamics  of  red  blood  cells  (RBCs)  is  one  of  the  major  aspects  of  the  cardiovascular  system  that  has  been  studied intensively  in  the  past  few  decades.  Using  computational  fluid  dynamics,  complex  nonlinear  fluid  flows  have  been  modeled.  The dynamics  of  biconcave  RBCs  are  thought  to  have  major  influences  in  cardiovascular  diseases  and  other  problems  associated  with cardiovascular flow behaviour, and the determination of blood rheology and properties. Most reported computational models have been confined  to  the  behaviour  of  a  single  RBC  in  2-dimensional  domains,  under  physiological  flow  conditions.  This  work  investigates  a particular stacking pattern in analyzing the RBC flow behavior  under physiological flow conditions, using the D2Q9 lattice Boltzmann numerical method created using Matlab. Prior to the analysis the Matlab script was benchmarked using the Poiseuille flow and the flow around the  cross-section  of  a  cylinder, after  which  the  accuracy  of  the method used  was  determined. The  benchmarks showed  that  the lattice  Boltzmann  code  had  minimal  error.  The  accuracy  was  determined  using  the  data  obtained  from  Matlab  and  a  created  excel program. It also showed that the lattice Boltzmann method was of the first order, which corresponds with results existing in literatures.

The analysis of the stacking pattern showed how RBC flows through the chosen stacking pattern, and the results are shown.

Keyword:  lattice Boltzmann method, Red Blood Cell, Fluid Flow.


I. Introduction 

Blood is a specialized connective tissue composed of cells suspended in a fluid matrix called plasma. Its primary function is to transport vital substances, including oxygen, carbon dioxide, nutrients, waste products, and hormones, throughout the body. Blood cells encompass erythrocytes  (red  blood  cells),  leukocytes  (white  blood  cells),  and  thrombocytes  (platelets).  Erythrocytes  exhibit  a  distinctive  discoid shape with a thickened rim and a thinner central region.

[14]  Introduced,  a  strain  energy  function  to  characterize  the  elastic  properties  of  the  human  red  blood  cell  membrane.  This  function incorporates  multiple  elastic  moduli  to  account  for  the  membrane's  complex  behavior  under  deformation.  The  model  successfully predicts  the  sphering  of  red  blood  cells  in hypotonic  solutions  and  provides  insights  into  phenomena  such as  sieving and  micropipette experiments.

Human  adults  typically  possess  a  blood  volume  of  4-6  liters,  maintained  in  circulation  by  the  heart's  pumping  action  [10].  The  heart consists  of  four  chambers:  two  atria  and  two  ventricles.  Valves  ensure  unidirectional  blood  flow  between  chambers.  The  circulatory system  comprises  two  interconnected  circuits:  the  pulmonary  circuit,  which  exchanges  gases  between  the  lungs  and  blood,  and  the systemic circuit, which delivers oxygen and nutrients to tissues while removing waste products [10].

The  Navier-Stokes  equations  serve  as  the  fundamental  framework  for  modeling  blood  flow.  While  complex,  these  equations  can  be simplified through appropriate assumptions, leading to linearized models. Early computational fluid dynamics (CFD) studies employed these simplified models to investigate blood flow patterns. Pioneering work by Harlow's group at Los Alamos National Laboratory in the 150s  and  1960s  advanced  CFD  techniques  for  two-dimensional  fluid  flow  [1].  The  Panel  method,  introduced  by  [6,  7],  represented  a significant step forward in three-dimensional CFD simulations.


II. Materials and Methods 

 

The lattice Boltzmann method (LBM) evolved from lattice gas automata, initially introduced in  1976 by [4] and later expanded upon by

[3].  LBM's  versatility  in  addressing  complex  fluid  dynamics  problems,  including  red  blood  cell  (RBC)  flow,  is  attributed  to  its adaptability  to  various  dimensions  and  accuracies.  Its  applications  encompass  1  -3  dimensional  simulations  with  varying  levels  of precision. This study aims to determine numerical solutions for Poiseuille flow (driven by pressure gradient or fixed inlet velocity) and flow around a cylindrical cross-section (using Stokes' stream function) through LBM. [11, 12, 13]

A fundamental step involves reviewing the lattice Boltzmann model for the incompressible Navier-Stokes equation. A key aspect is the explicit elimination of terms proportional to the square of the Mach number (M²) to mitigate density fluctuations inherent in traditional LBM. The Chapman-Enskog procedure is employed to derive the incompressible Navier-Stokes equation from the incompressible LBM.

These methodologies, as detailed by various researchers, serve as essential tools for developing a MATLAB implementation of the lattice Boltzmann equation.
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III. The Lattice Boltzmann Method 

The Boltzmann equation, underpinning the LBM, relies on the Stosszahl Ansatz, or molecular chaos assumption, to significantly reduce computational  cost  [12].  This  assumption,  while  sacrificing  detailed  particle-level  information,  proves  adequate  for  fluid  dynamics simulations operating at scales far exceeding the molecular level.

The  usage  of  Boltzmann’s  so  called  Stosszahl  Ansatz,  which  is  an  assumption  of  molecular  chaos,  will  be  a  much  computationally cheaper solution, [13]. The usage of the Stosszahl Ansatz results directly in the following equation 𝑁 (

(

𝑖 𝑟

⃑ + 𝑣⃑𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑁𝑖 𝑟⃑, 𝑡) + Ω𝑖(𝑁𝑖)

 

 

 

 

3.0

This results in a loss of detail of the dynamics of each separate particle, which saves computational time. For some cases the loss of detail can be a disadvantage. However, for fluid dynamics applications, this assumption is a valid one since the scale of the flow is much bigger than the molecular scale [12].

The lattice Boltzmann method is a method based on the lattice gas automata. The LBM is capable of solving complex three-dimensional problems on fluid dynamics. The main equation when using the lattice Boltzmann method is given by 𝑁 (

(

(

𝑖 𝑥

⃑ + 𝑐⃑𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑁𝑖 𝑥⃑, 𝑡) + Ω𝑖(𝑁𝑖 𝑥⃑, 𝑡))

 

 

 

 

3.1

in which the collision operator  Ω

(

𝑖(𝑁𝑖 𝑥

⃑, 𝑡)) has been defined as

1

Ω

(

(

(

𝑖(𝑁𝑖 𝑥

⃑, 𝑡)) = − [𝑁 𝑥⃑, 𝑡) − 𝑁

𝑥⃑, 𝑡)]

 

 

 

 

3.2

𝜏

𝑖

𝑖,𝑒𝑞

The  collision  factor  Ω

(

𝑖(𝑁𝑖 𝑥

⃑, 𝑡))  is required to  satisfy  the  law  of  conservation  of  mass  and  momentum at  each lattice node.  Hence,  it holds that the following rule is applicable for Ω𝑖, ie.

∑ Ω

𝑖

𝑖 = 0

 

 

 

 

 

 

 

 

 

3.3

Considering  equation  (3.62),  τ   stands  for  the relaxation  time  which  is  a  measure  for how  fast  the  collisional  operator relaxes  from the actual to the equilibrium configuration. The viscosity is related to the relaxation time as well as the particle velocity in a certain direction according to

𝑣 = (𝜏 − 0.5)𝑐 2

𝑖

 

 

 

 

 

 

 

3.4

𝑣 is the kinematic viscosity, 𝜏  is the relaxation time and 𝑐𝑖 is a set of variables describing the particle velocity. The pressure and density are also related to each other. This relationship is represented by 𝑝 = 𝜌𝑐2𝑖

 

 

 

 

 

 

 

 

 

3.5

Inserting equation (3.2) into equation (3.1) gives the complete equation for the lattice Boltzmann method.

1

𝑁 (

(

(

(

𝑖 𝑥

⃑ + 𝑐⃑𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑁𝑖 𝑥⃑, 𝑡) − [𝑁 𝑥⃑, 𝑡) − 𝑁

𝑥⃑, 𝑡)]

 

3.6

𝜏

𝑖

𝑖,𝑒𝑞

𝑐𝑖(𝑖 = 1,2, … , 𝑀) is as earlier define with M as the number of direction of the particle velocities at each node.

𝑁𝑖(𝑖 = 1,2, … , 𝑀)) is a set of variables describing the particle occupation, again with M being the number of directions. The number of variables depends on the type of model one uses.


The DnQm Models 

The problems that one can encounter are of different dimensions and complexities. There are several lattice Boltzmann models which can be used that are suitable for each dimension. These models are all of the form DnQm, in which n stands for the dimension and m stands for the number of speeds of the model. These speeds are the numbers of discrete velocity vectors used to create the grid. Different models are given for two and three dimensions [9].


IV. Results and Discussion 

The  lattice  Boltzmann  method  is  used  to  simulate  the  RBCs  flow  through  a  specific  stacking  pattern  of  boundaries.  This  is  done  by creating a program to execute the lattice Boltzmann equation in Matlab.


4.1 The Computational Flow Chart 

The computational program consists of four major parts which will be explained further. The first step starts with the creation of the grid which  is  done  by  defining  the  dimensions  of  the  grid,  i.e.  lx   and   ly,  being  the  lengths  of  the  square  grid  (i.e.   𝑙𝑥 = 𝑙𝑦).  Next,  some essential  parameters  are  set  a  priori  of  the  main  program.  These  are  the  relaxation  time,  viscosity,  the  density  and  the  weight  factors.

Initializing the LB-matrix is the last part of this step and is done by creating the LB- matrix using the internal Matlab function repmat (the LB-matrix is a matrix having the entire lattice Boltzmann functions in it). Repmat(A,[M N P ...]) tiles the array A to produce a multi-dimensional array  composed  of  copies  of  A.  After  the  LB-array  has  been  created  it  has  to  be  initialized  which can be done in several ways, the one used in this work is by stating that the LB-array is equal to the equilibrium terms www.ijltemas.in                                                                                                                                                                              Page  175
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The  second  part  of  the  code  is  to  generate  the  boundaries.  This  is  done  by  creating  a  Boolean  variable  in  which  1  means  that  it  is  a boundary and 0 means that it is not a boundary. An advantage of this is that it enables the opportunity to create any boundary one desires.

The third step is to execute the LBM in a  while loop to create a velocity profile. The first part of the  while loop includes the creation of the nine  LB-functions  which  are  initialized in  step  1.  After the macroscopic  parameters are  calculated,  being  the  x-velocity,  y-velocity and the density. Those are needed to determine the nine equilibrium terms. The last part of the   while loop is to enlarge the time by one unit so the  while loop runs again until the maximum steps are used.

The fourth and final step is to create a vector field which represents the velocity field. This is done by using the internal Matlab function quiver. Quiver (X, Y, U, V) plots velocity vectors as arrows with components (u,v) at the points (x,y),[2].


4.2 Benchmarks 

This is done by benchmarking the program and letting the program execute problems which can be evaluated analytically. In this case two benchmarks have been done. The first is the Poiseuille flow and the second is the flow around the cross-section of a cylinder using Stokes’ stream function.

4.2.1 Poiseuille Flow 

The first benchmark that has been executed is the Poiseuille flow. This is a  laminar flow through two solid boundaries. The laminar flow is  the normal  condition  for  blood  flow  throughout most  of  the  circulatory  system  and it  is  characterized  by  concentric  layers  of  blood moving in parallel down the length of a blood vessel. Generally the body RBC flow is laminar. However, under condition of high flow, particularly in ascending aorta with high Reynolds number laminar flow can be disrupted and become turbulent. When this occurs, the RBC does not flow linearly and smoothly in adjacent layers, but instead the flow can be described as being chaotic.


4.2.1.1 The Analytical Solution 

To  obtain  the  velocity  profile  of  a  Poiseuille  flow  the  general  Navier-Stokes  equations  for  an incompressible  medium  is  considered.

Recall equation (3.1)

𝜕𝑢

𝜌

+ 𝜌𝑢

⃑⃑ ∙ ∇𝑢

⃑⃑ = −∇𝑝⃑ + 𝜇∇2𝑢

⃑⃑ + 𝐹⃑

𝜕𝑡

𝑒𝑥𝑡

 

 

 

 

4.1

First of all when dealing with incompressible flow, the Navier-Stokes equation can be simplified into

∇𝑝⃑ = 𝜇∇2𝑢

⃑⃑ + 𝐹⃑𝑒𝑥𝑡

 

 

 

 

 

 

 

4.2

In this particular case there is no external force, meaning that the ⃑Fext   term is zero. Also due to the fact that it is a symmetric problem, equation (4.2) can be simplified even further into

𝜕𝑝⃑

𝜕2𝑢

⃑⃑

= 𝜇

 

 

 

 

 

 

 

 

 

4.3

𝜕𝑥

𝜕𝑦2

𝜕𝑝⃑

Solving this equation for 𝑢

⃑⃑(𝑖) is an easy differential equation, the result is, with     taken as constant

𝜕𝑥

1 𝜕𝑝⃑

𝑢⃑⃑(𝑖) =

𝑦2 + 𝐶

2𝜇 𝜕𝑥

1𝑦 + 𝐶2

 

 

 

 

 

 

4.4

Boundary conditions are needed to obtain for  C1  and  C2

Boundary condition 1:  𝑢

⃑ (0) = 0 𝑔𝑖𝑣𝑒𝑠 C2 = 0    (non- slip condition)

1 𝜕𝑢

⃑⃑

Boundary condition 2:  𝑢

⃑(𝐷) = 0 gives  𝐶1 = −

𝐷

2𝜇 𝜕𝑥

Inserting the previously found  C1  and  C2  in the equation for 𝑢

⃑⃑ and simplifying the result gives

 

1 𝜕𝑢

⃑⃑

𝑢

⃑⃑ = −

(𝐷𝑦 − 𝑦2)

 

 

 

 

 

4.5

2𝜇 𝜕𝑥

In this equation   y   is the  distance from the bottom of th e  plate to a  point  between the plates, and  D is the distance between the bottom and the top of the plate, [1].

𝐷

From equation (4.5) one can see that the maximum velocity occurs precisely in the middle of the two  plates  at  𝑦 = .   This  is  done  by 2

𝜕𝑢

⃑⃑

solving

= 0. At the solid boundaries the velocity is zero.

𝜕𝑦

This is in line with the no-slip boundary condition.

𝜕𝑢

⃑⃑

Taking 𝑖 = 1, 2, 3, … , 101., 𝐷 = 1,

= 1, 𝜇 = 1, 𝑦 = 0, 0.01, 0.02, … , 1) the analytically  generated  values are    𝑢̂(𝑖) =  0,  -0.00495, -

𝜕𝑥

0.0098, -0.01454999999, -0.0192000000000, -0.02375 …
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4.2.1.2  Results of the Analytical Poiseuille Flow 

The results of the analytically determined Poiseuille flow are represented in figure 1 which has been made  creating  a  Matlab  code. The velocity  in  the  upward  direction  is  defined   as positive making the velocity in figure 1 positive as well. In practice this means that the pressure  gradient is positive.

 

Figure 1: Visualization of the analytical solution of the Poiseuille flow. In the Matlab program the inflow and outflow boundaries have been made periodic. This has been done by stating that, what flows in equals what flows out, making the boundaries periodic.


4.2.1.3  The Computationally Determined Solution 

For the Matlab script to give the Poiseuille flow, the boundaries have to be set properly, as shown above. Since the D2Q9 model is used, the boundaries are set at both ends of the horizontal axis. The script export the obtained data to an excel sheet where the values are saved.

The data from excel are imported in Matlab where further calculations are executed.

 

Figure 2: The analytical  solution together with the determined  values of the Poiseuille flow using the half-way bounce back method www.ijltemas.in                                                                                                                                                                              Page  177
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4.2.1.4  Comparing the Two Results 

In a  secluded  Matlab program the exported values of the Poiseuille flow, determined with the lattice Boltzmann method, are compared with the analytical solution. The analytical solution is plotted as a graph and the determined values are plotted in the plot as x-marks. As visible in figure 2, the analytical solution is plotted as a blue line and the red x-marks are the determined values.

Figure 2 only gives information of the chosen points, more points means that a more accurate comparison can be made. In this case 28

points are chosen to be analyzed. What can be noticed directly  is  that  the  x-marks  do  not  begin  and  end  at  the  relative  length  of  zero and  1 respectively.

This is because the Matlab script uses the half-way bounce back method and this method gives only values between grid nodes.

What can be concluded from the 28 points is that their values are correspondent to the analytical solution. The conclusion from this result is  that,  in  the  case  of  the  Poiseuille  flow,  the  Matlab  script  gives  logical  values  and  represents  the  reality.  However,  with  only  one benchmark the reliability of the result is still questionable; hence a second benchmark is carried out.


4.2.2 

Flow around the Cross-Section of a Cylinder 

The  second  benchmark  is  a  more  complex  process  to  calculate  the  flow  of  RBCs  analytically,  as well as to compute in Matlab. It is the flow around the cross-section of a cylinder which is centered in the middle of the grid without solid walls. This investigation is to analyze the effect (through the Matlab program) of the flow of RBCs in the plasma layer near the arteriole wall on nitric oxide (NO) and oxygen (O2) transport.

First the analytical solution will be given, after which the results will be compared with the results of the Matlab script.

4.2.2.1 


The Analytical Solution 

Whenever  an  infinitely  long  cylinder,  with radius  a, is  moving  through  an  infinite  stationary  fluid  with a  constant  velocity  U,  one  can solve the Navier-Stokes equation to obtain the velocity profile. Using the Stokes stream function ψ, the problem of solving the Navier-Stokes equation is reduced to solving a partial differential equation for ψ. The problem is simplified even more by choosing the proper boundary conditions. This will reduce the problem to that of solving an ordinary differential equation in order to obtain ψ.

4.2.2.2   Solving the Navier-Stokes Equation 

The Navier-Stokes equation for an incompressible fluid is given by [15] and in equation (4.1)

𝜕𝑢

𝜌

+ 𝜌(𝑢

⃑⃑ ∙ ∇𝑢⃑⃑) = −∇𝑝⃑ + 𝜇∇2𝑢

⃑⃑ + 𝐹⃑

𝜕𝑡

𝑒𝑥𝑡                                             4.6

in which  ρ  is  the  density  of  the  fluid,  𝑢

⃑  is  the  velocity  of  the  fluid,  p   is  the  pressure,  𝜇  is  the dynamic  viscosity  of  the  fluid  and  ⃑Fext is  a  term  which  is  nonzero  when  there  are  external  body  forces. The assumption that the Reynolds number is very  low results in a reduction of the Navier- Stokes equation due to the   fact   that   for   low   Reynolds   numbers   the   term   (𝑢

⃑. ∇) u⃑may be disregarded. The

equation is simplified further because a stationary solution has to be found, [8]. The simplified version of the Navier-Stokes equation for low Reynolds number is

∇𝑝 = μ∇2u⃑                                                                                       4.7

The rule of Laplace states that the Laplace operator can be rewritten as

∇2𝑢

⃑ = ∇ × (∇ × 𝑢⃑) − ∇(∇ ∙ 𝑢⃑)                                           4.8

Combining equation (4.8) and the continuity condition which says that ∇ ∙ 𝑢

⃑=0, equation (4.7) can be reduced to

∇𝑝 = −𝜇∇ × (∇ × 𝑢

⃑) = −𝜇∇ × ⃑Ω

4.9

in  which  the  vector  Ω

⃑     has been introduced.  The vector is given by Ω⃑ =  ∇ × 𝑢⃑    because the problem is symmetrical in the axis, an axisymmetric velocity field will be sought in the form of

𝑢

⃑⃑ = 𝑢 (

𝑟 𝑟, 𝜃)𝑒̂𝑟 + 𝑢𝜃(𝑟, 𝜃)𝑒̂𝜃                                                            4.10

4.2.2.3  Introducing the Stokes Stream Function 

The divergence ∇ ∙ 𝑢

⃑ for an axisymmetric velocity field in spherical coordinates is given by 1 𝜕

1

𝜕

∇ ∙ 𝑢

⃑⃑ =

(𝑟2𝑢 ) +

(𝑢

𝑟2 𝜕𝑟

𝑟

𝑟𝑠𝑖𝑛𝜃 𝜕𝜃

𝜃𝑠𝑖𝑛𝜃)

 

 

 

4.11

Using the continuity equation and the introduction of the Stokes stream function  ψ(r,θ)  will give an expression for 𝑢𝑟 and 𝑢𝜃

1

𝜕𝜓

𝑢𝑟 =

 

 

 

 

 

 

 

4.12a

𝑟2𝑠𝑖𝑛𝜃 𝜕𝜃
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−1 𝜕𝜓

𝑢𝜃 =

 

 

 

 

 

 

 

4.12b

𝑟𝑠𝑖𝑛𝜃 𝜕𝜃

Equations (4.12) show that the velocity profile is only dependent on the stream function. In order to determine the stream function from the Navier-Stokes equation one has to calculate

Ω

⃑⃑⃑ = ∇ × 𝑢⃑⃑ = Ω𝑟𝑒̂𝜃 + Ω𝜃𝑒̂𝜑

 

 

 

 

 

 

4.13

Since 𝑢

⃑ is axisymmetric the  r  and  θ  components are zero leaving only the  φ  component.

1

𝜕𝑢

Ω

(

)

𝑟

𝜑 =

( 𝜕 𝑟𝑢

−

)

𝑟

𝜕𝑟

𝜃

𝜕𝜃

1

𝜕𝜓

𝜕

𝜕𝜓

= [( 𝜕 ( −1

) −

( 1

)]

𝑟

𝜕𝑟 𝑠𝑖𝑛𝜃 𝜕𝑟

𝜕𝜃

𝑟2𝑠𝑖𝑛𝜃 𝜕𝜃

−1

𝑠𝑖𝑛𝜃 𝜕

𝜕𝜓

=

[(𝜕2𝜓 +

( 1

)]

 

𝑠𝑖𝑛𝜃

𝜕𝑟2

𝑟2 𝜕𝜃 𝑠𝑖𝑛𝜃 𝜕𝜃

−1

=

𝐸2𝜓

 

 

 

 

 

4.14

𝑟𝑠𝑖𝑛𝜃

in which 𝐸2 is a differential operator and is defined as

𝜕2

𝑠𝑖𝑛𝜃 𝜕

𝜕𝜓

𝐸2 =

+

( 1

)

 

 

 

 

 

4.15

𝜕𝑟2

𝑟2 𝜕𝜃

𝑠𝑖𝑛𝜃 𝜕𝜃

Inserting this equation in equation (4.9) results in

∇𝑝 = −𝜇∇ × (∇ × 𝑢

⃑⃑) = −𝜇∇ × Ω

⃑⃑⃑

−𝜇

𝑢

=

( 𝜕 (−1 𝐸2𝜓)) 𝑒

( 𝜕 ( −1 𝐸2𝜓)) 𝑒̂

𝑟𝑠𝑖𝑛𝜃

𝜕𝜃

𝑟

𝑟

̂ + 𝑟 𝜕𝑟 𝑠𝑖𝑛𝜃

𝜃

−𝜇

𝜕

𝜇

=

(𝐸2𝜓)𝑒

( 𝜕 (𝐸2𝜓)) 𝑒̂

𝑟2𝑠𝑖𝑛𝜃 𝜕𝜃

𝑟

̂ − 𝑟𝑠𝑖𝑛𝜃 𝜕𝑟

𝜃

 

 

4.16

𝜕𝑝

1 𝜕𝑝

1

𝜕𝑝

Due to the fact that ∇p =

𝑒̂

𝑒̂

𝑒̂

𝜕𝑟

𝑟 + 𝑟 𝜕𝜃 𝜃 + 𝑟𝑠𝑖𝑛𝜃 𝜕𝜑 𝜑  one can obtain two differential equations for the pressure [8]

𝜕𝑝

𝜇

𝜕

=

(𝐸2𝜓)

 

 

 

 

 

 

 

4.17a

𝜕𝑟

𝑟2𝑠𝑖𝑛𝜃 𝜕𝜃

𝜕𝑝

𝜇

= −

( 𝜕 (𝐸2𝜓))

 

 

 

 

 

4.17b

𝜕𝜃

𝑟𝑠𝑖𝑛𝜃

𝜕𝑟

When these two equations are cross-differentiated they become

𝜕 (𝜕𝑝)

𝜇 𝜕

𝜕

=

( 1

(𝐸2𝜓))

 

 

 

 

 

4.18a

𝜕𝜃

𝜕𝑟

𝑟2 𝜕𝜃 𝑠𝑖𝑛𝜃 𝜕𝜃

𝜕 (𝜕𝑝)

𝜇

𝜕2

= −

(𝐸2𝜓)

 

 

 

 

 

 

4.18b

𝜕𝑟 𝜕𝜃

𝑠𝑖𝑛𝜃 𝜕𝑟2

These two cross-differentiations must be equal, resulting in

𝜕2 (

𝑠𝑖𝑛𝜃 𝜕

𝜕

𝐸2𝜓) +

( 1

(𝐸2𝜓)) = 𝐸2(𝐸2𝜓) = 0

 

 

4.19

𝜕𝑟2

𝑟2 𝜕𝜃

𝑠𝑖𝑛𝜃 𝜕𝜃

Inserting the formula for the differential operator 𝐸2 in equation (4.19) yields 2

𝑠𝑖𝑛𝜃 𝜕

𝜕

[ 𝜕2 +

( 1

)] 𝜓 = 0

 

 

 

 

4.20

𝜕𝑟2

𝑟2 𝜕𝜃 𝑠𝑖𝑛𝜃 𝜕𝜃

 

Solving  this  equation  requires  boundary  conditions.  For  this  problem  two  boundary  conditions  are imposed.  The  first  is  the  no-slip condition  on  the  surface  of  the  cylinder  resulting  in 𝑢

⃑(𝑎, 𝜃) = 0. The second boundary condition says that the flow far from the cylinder has a constant velocity  U. The no-slip condition implies that

𝜕𝜓 |

𝜕𝑟 𝑟=𝑎 = 0

 

 

 

 

 

 

 

 

4.21a

𝜕𝜓 |

𝜕𝜃 𝑟=𝑎 = 0

 

 

 

 

 

 

 

 

4.21b

The second boundary condition can be formulated using limits. The second boundary condition is 𝑙𝑖𝑚𝑟→∞𝑢𝑟 = 𝑈𝑐𝑜𝑠𝜃

 

 

 

 

 

 

4.22a
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𝑙𝑖𝑚𝑟→∞𝑢𝜃 = −𝑈𝑐𝑜𝑠𝜃

 

 

 

 

 

4.22b

This  boundary  condition  needs  to  be  reformulated  so  it  will  be  a  requirement  for   ψ  instead  of  𝑢

⃑.  Using  equations  (4.12)  the  second

boundary conditions can be rewritten and one can easily find the new boundary condition for  ψ 

1

𝑙𝑖𝑚𝑟→∞ψ = 𝑈2𝑠𝑖𝑛2𝜃

 

 

 

 

 

4.23

2

This  boundary  condition  results  in  a  prediction  of  how  the  final  stream  function  will  look  like.  The expectation  is  that  the  stream function should have the following form

ψ =   f(r)sin2θ

 

 

 

 

 

 

4.24

To check this solution the differential operator 𝐸2 is applied to equation (2.18)

𝜕2

𝑠𝑖𝑛𝜃 𝜕

𝜕

𝐸2(f(r)sin2θ) =

(𝑓(𝑟)𝑠𝑖𝑛2𝜃) +

( 1

(𝑓(𝑟)𝑠𝑖𝑛2𝜃))

𝜕𝑟2

𝑟2 𝜕𝜃 𝑠𝑖𝑛𝜃 𝜕𝜃

𝜕2𝑓(𝑟)

𝑠𝑖𝑛𝜃 𝜕

=

𝑠𝑖𝑛2𝜃 +

(𝑓(𝑟) 2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃)

𝜕𝑟2

𝑟2 𝜕𝜃 𝑠𝑖𝑛𝜃

2

= ( 𝑑2 − ) 𝑓(𝑟)𝑠𝑖𝑛2𝜃

 

 

 

 

4.25

𝑑𝑟2

𝑟2

To simplify the equation a dummy function is introduced, represented by 2

𝑔(𝑟) = ( 𝑑2 − ) 𝑓(𝑟)

 

 

 

 

 

 

 

4.26

𝑑𝑟2

𝑟2

After introducing this dummy function the differential operator 𝐸2 is again applied to  equation (4.25), resulting in 𝐸2 = (𝐸2(𝑓(𝑟)𝑠𝑖𝑛2𝜃)) = 𝐸2(𝑔(𝑟)𝑠𝑖𝑛2𝜃)

2

= ( 𝑑2 − ) 𝑔(𝑟)𝑠𝑖𝑛2𝜃

𝑑𝑟2

𝑟2

2

2

= ( 𝑑2 − ) 𝑓(𝑟)𝑠𝑖𝑛2𝜃

 

 

 

 

4.27

𝑑𝑟2

𝑟2

If the trial  function given by  equation  (4.24)  satisfies  the differential  equation  for   ψ,  which is  given by  equation  (4.19),  then  equation (4.27)  must  be  equal  to  zero.  This  results  is  a  requirement  for f(𝑟) in the form of an ordinary differential equation 2

( 𝑑2

2

−

) 𝑓(𝑟) = 𝜃

 

 

 

 

 

 

4.28

𝑑𝑟2

𝑟2

The  form  of  the  equation  implies  a  solution  of  the  type  (𝑟) = 𝑟𝛼.  Inserting  this  into  equation (4.28) results in 2

( 𝑑2

2

−

) 𝑟∝ = 𝜃

 

 

 

 

 

4.29

𝑑𝑟2

𝑟2

And one can easily find the solution α

(∝ (∝ −1) − 2)((∝ −2)(∝ −3) − 2) = 0

 

4.30

The solutions of equation (4.30) are  𝛼 = −1, 1, 2 𝑎𝑛𝑑 4. Now these solutions can be implemented in the solution to the partial differential equation for  ψ  in the form of

ψ = (A𝑟−1 + 𝐵𝑟1 + 𝐶𝑟2 + 𝐷𝑟4)𝑠𝑖𝑛𝜃

4 . 3 1

The  boundary  conditions  can  be  used  to  find the  variables   A,  B,  C  and   D.  The  second  boundary  condition  (uniform  flow  far  from  the cylinder) requires that 𝐶𝑟2  is the dominant term as 𝑟 →  ∞  which in turn implies 𝐷  = 0. Using equation (4.23) one can find that 1

𝐶 = 𝑈

 

 

 

 

 

 

 

 

4.32

2

The no-slip condition leads to two requirements of the derivatives of  ψ. These are used to determine the two remaining constants,  A  and B. Using equations (4.21) results in two functions

𝐴

−

+ 𝐵 + 𝑈𝑎 = 0

 

 

 

 

 

 

 

4.33a

𝑎2

𝐴

1

+ 𝐵𝑎 + 𝑈𝑎2 = 0

 

 

 

 

 

4.33b

𝑎

2

These equations form a set which can be solved using linear algebra. Using this technique one can find that 1

𝐴 = 𝑈𝑎3

 

 

 

 

 

 

 

 

4.34a

4
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3

𝐵 = − 𝑈𝑎

 

 

 

 

 

 

 

 

4.34b

4

Now that the variables  A,  B,  C  and  D  are known, the stream function can be obtained 1

ψ = 𝑈(2𝑟2 − 3𝑎𝑟 + 𝑎3𝑟−1)𝑠𝑖𝑛2𝜃

4.35

4

Combining equations (4.12) and equation (4.35), Versteeg, H. K., & Malalasekera, W. (2007), the velocity profile of the fluid can be found

3𝑎

𝑎3

3𝑎

𝑎3

𝑢⃑⃑ = 𝑈𝑐𝑜𝑠𝜃 (1 −

+

) 𝑒̂

+

) 𝑒̂

2𝑟

2𝑟3

𝑟 − 𝑈𝑠𝑖𝑛𝜃 (1 − 4𝑟

4𝑟3

𝜃

 

 

 

4.36

 

4.2.2.4  Results of the Analytical Flow Around the Cross-Section of a Cylinder To visualize the analytically calculated flow around the cross-section of a cylinder given  by equation (4.36), a Matlab program has been written to simulate the flow. This program makes a surface plot of the velocity field as shown in figure 3.

 

Figure  3:  The  surface  plot  of  the  analytically  determined  velocity  field  of  the  flow  around the cross-section of a cylinder 4.2.2.5  The Computationally Determined Solution 

For the Matlab script to give the flow around the cross-section of a cylinder, the boundaries are set properly. The boundaries are built by hand in a high precision model, which represents the cross- section of a cylinder good while keeping the computational time limited.


4.2.2.5.1 

Results of the computationally determined flow around the cross-section of a cylinder The  Matlab  program  has  been  modified  in  order  to  give  the  velocity  field  around  a  model  of  the cross-section  of a  cylinder.  This result is shown in figure 4.


4.2.2.6  Comparing the Two Results 

Comparing figure 3 and figure 4 gives an interesting result. One can see that inside the cross- sections the velocity in both figures is zero.

Also  the  velocity  field  far  away  from  the  cross-section  of  the  cylinder  becomes  uniform  which  is  shown in  both  figures.  In  figure  4.4

however,  the  full  axes   are  not  shown.  Because  of  this  the  flow  near  the  sides  of  the  figure  are  not  uniform  and  could  therefore  be misinterpreted.  The major  similarity  is  that  the flow  around  both  cross-sections  is  similar  i.e  (figure 3 has a real sphere and figure 4

has a modeled sphere), the velocity becomes slower and follows the boundaries of the cross-sections smoothly.

The only difference  between  both  figures is that in figure 4, the cross-section is not smooth resulting in velocity vectors at places where there  should not  be  any.  However,  this  is  not the result  of a  mistake in  the  Matlab  program  but  it  is  due  to  lack  of  accuracy  of  the www.ijltemas.in                                                                                                                                                                              Page  181
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model  of  the  cross-section.  Figure  4  has  a high  degree of accuracy making it safe to say that both figures should become similar when the  accuracy  of  figure  4  increases  even  more.  However,  this  is  not  done  due  to  large  computational  time  needed  to   perform  such calculations.  Another  difference  is  that  the  domain  which  is  used  is  not  infinitely  large, which will result in different outcomes than the analytical solution.

 

Figure 4: The computationally determined velocity field around a model of the cross-section of a cylinder 4.3 


Final Conclusion of the Benchmarks 

In  both  benchmarks,  the  Matlab  program  performed  as  expected.  The  first  benchmark  was  the  Poiseuille  flow  and  due  to  all  the similarities and the absence of large differences, the Matlab program for this case can be considered to be correct. The second benchmark was  a  more  complex  one,  not  only  to  solve  analytically  but  it  took  also  a  lot  more  computational  time  (e.g.  the  computational  time needed for a 100x100 grid was 34 hours on a regular laptop). However, because of all the similarities and the only difference caused by lack of accuracy it is again safe to say that the  Matlab  program  gives  the  correct  answers.  The  final  conclusion  of  the  benchmarks  is that  in  both cases the Matlab program gives physically plausible results which are the same as the analytically determined results. The Matlab program can therefore be considered to be correct.


4.4 

Determining the Error of the Used Lattice Boltzmann Method 

In order to get an indication of the accuracy  of the used method, the error is determined. To determine the error, four resolutions have been made of a cross-section of a cylinder,  each having  an increase in the accuracy. For these four resolutions several points in the plot have  been  compared    with  the  results  of  the  analytically  determined  values  of  those  points,  after  which  an  error  has  been  calculated using equation (4.37) [1]

|𝑣𝑎𝑙𝑢𝑒

𝜀 =

𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙−𝑣𝑎𝑙𝑢𝑒𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙

 

 

 

4.37

𝑣𝑎𝑙𝑢𝑒𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

The errors of the different models have been calculated using a program made in excel. The results of the excel program were imported in Matlab where further calculations were made [15]. In this section, the outcome of the determination of the error of the used method is shown.

4.5 


Result 

In both benchmark cases the results are plausible, physically correct and  have many similarities with the analytical results. Therefore the Matlab  program  is  considered  to  be  correct,  meaning  that    more  complex  geometries  can  be  evaluated  and  the  results  can  also  be considered to be correct. The results  of  the  determination  of the  error  of  the  used  method  are  shown  first, after  which the results of the analysis of the stacking pattern are shown.
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Figure 5: The plot of the normalized error vs the grid accuracy of the flow around the cross section of a cylinder on regular axes 4.5.1 The Determination of the Error of the Used Method 

The error in the method used has been determined using four resolutions of increasing accuracy (i.e. more grid nodes used to tighten the grid). The errors were determined using an excel program after which  Matlab  was  used  to make  plots  of  the  error  vs  the  grid accuracy.

Two plots  were made as shown in figures 5 and 6, one on regular axes and one on semi-log axes (i.e. the y-axis is logarithmic).

Figure 5, shows that when the accuracy of the grid increases the normalized error drops like an exponential  function.  To  confirm  this estimation  another  plot  is  made  in  Matlab  using  semi-log axes. This means that the y-axis has a logarithmic scale and the x-axis has a regular scale. The results of this semi-log plot are shown in figure 6.

 

Figure 6: The plot of the normalized error vs the grid accuracy on semi-log axes These plots are used in order to get a better understanding of the order of the error. This is done by using the “fit” function in Matlab. The function  gives  the parameters  of  the  estimated  function  which  connects  the  points  in the  best  way  possible  (i.e.  Matlab  uses  the  least squares method). From figure 4.5 and 4.6, the function is estimated to be an exponential function of the form 𝑓𝑖𝑡 = A(𝐵𝑥)

 

4.38

In which A and B are constants with A = 1 since it is normalized and B =  -0.9639, which is estimated by Matlab with an accuracy  of 95%. This results in the function of the error as

𝑒𝑟𝑟𝑜𝑟  = exp (−0.9639𝑥)

4.39
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that  the  chosen  method  is  of  the  first  order.  Since  the  half-way bounce  back  method  is  used,  this  result  corresponds  with  the  one mentioned in the literature

 

Figure 8: The complete view of the vector field created by Matlab with the marked areas which will be looked at more with more detail (i.e. red = area 1, green = area 2, yellow = area 3). Parameters used are τ = 0.6, Re < 100, D = 20 lu Figure 4.7: The stacking pattern which is analyzed in Matlab using the lattice Boltzmann method After  running  the  Matlab  program  a  vector  field  is  created  which  shows  how  the  fluid  moves  through  this  specific  stacking  pattern.

However, since the grid has a high accuracy the vector field can not be analyzed when looking at the complete picture as one can see in figure 8.

To  analyze  the  vector  field,  three areas  are  looked  upon  more  closely.  The  first area  (marked red  in  figure  8)  which  is  analyzed  is  the cluster of three cross-sections of cylinders in the top-right of figure 8. The second  area (marked green in figure 8) is the other cluster of three cross-sections of  cylinders  in  the  bottom-left  corner.  These  two  areas  both  have  a  cluster  of  three  cross-sections but  they  are oriented  in  different  ways.  The  last  area  (marked  yellow  in  figure  8)  which  is analyzed is the pathway through the middle of the cross-sections. These areas are chosen because in these areas the most interesting things will happen.


4.5.2.1  Analyzing area 1 

The first area which will be analyzed is the one marked red in figure  8. This area is chosen because in the cluster of the cross-sections there is a gap, where the fluid will come to a dead-end. As shown in figure 9 the incoming fluid moves around the cross-sections towards the gap. Once the fluid is in the gap the velocity drops rapidly and the fluid stands almost completely still at the end of the gap. From figure 9 it can be seen that there is a mass accumulating in the gap, which is not physically possible.

 

Figure 9: The vector field of the analyzed stacking pattern focused on area 1
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4.5.2.2 Analyzing area 2 

The second area which will be analyzed is a similar one to area 1 but the orientation of the gap is now to the east side instead of to the north side. Another difference is that the incoming fluid is squeezed through a narrow path as one can see in figure 8. The vector field of area 2 is shown in figure 10. What can be observed is that, due to the orientation of the gap, the fluid in the gap almost stands still. This resistance is much greater in the gap  than through the pathway, therefore the fluid has no velocity in the large portion of the gap.

 

Figure 10: The vector field of the analyzed stacking pattern focused on area 2


4.5.2.3 Analyzing area 3 

The last area which is analyzed is the one marked yellow in figure 8. It is the area  between the majorities of the cross-sections in which the most preferable pathway is examined. In figure 8 the most preferable pathway can be seen when looking at the density of the vectors, but a more detailed overview can be found in figure 11. From figure 11 the most preferable pathway can be noticed. It is the path passing by the right side of the bottom-left cluster. This is in accordance with the expectations, due to expected lower resistance in the right side of the bottom-left cluster in comparison with the left side of this cluster.

 

Figure 11: The vector field of the analyzed stacking pattern focused on area 3
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5.1 Summary 

RBCs flow and its behavior was modeled and analyzed using the D2Q9 lattice Boltzmann method created in Matlab. Prior to the analysis of  the  determined  values,  the  Matlab  script  was  benchmarked  using  the  Poiseuille  flow  and  the  flow  around  the  cross-section  of  a cylinder, after which the accuracy of the used method was determined.


5.2 Conclusion 

The conclusions for the vector field are based upon the results and expectations due to fluid resistance.

The first benchmark is the Poiseuille flow. The analytically determined values resulted in a graph, which can be seen in figure 1. Using the  created  Matlab  script  the  velocities  of  28  points  were  calculated.  These  values  were  plotted  in  the  same  graph  as  the  analytically determined graph.

The  second  benchmark is the  flow  around a  cross-section  of  a  cylinder.  The analytical  derivation  is  more  complex  than  the  Poiseuille flow but it resulted in a surface plot, which can be seen in figure 2. After the result of the analytically determined flow field was known, the Matlab script was used in order to get a high precision model of a cross-section of a cylinder, which was used to model the fluid flow.

Due to the similarities between the modeled flow field and the analytically determined flow field, the Matlab script is considered to be correct regarding the second benchmark. 

The Matlab code is used in modelling the cross-section of a cylinder. Since it is a model the accuracy of the used model was examined.

The  accuracy  was  determined  using  a  created  excel  program  combined  with  Matlab.  The  accuracy  of  the  modeled  cross-section  was enlarged and with each enlargement, the error was shown between the obtained data and the analytically determined data. Finally a  plot was made of the error vs the accuracy, which can be seen in figures 5 and 6. Using Matlab’s internal function an estimate was made of the order of the error of the used lattice Boltzmann model. The result is that the error was of the first order which is in accordance with the literature value for the half-way bounce back method.

A certain geometry presented in figure 7, was created and analyzed using three areas in which more detail was visible.

The first area resulted in a vector field towards a cluster of cross-sections with a gap positioned north, which can be seen in figure 9. The fluid  flows  in  the  gap  and  the  fluid  velocity  goes  to  zero  as  the  fluid  comes  closer  to  the  boundaries.  This  is  in  accordance  with  the expectations because the fluid comes to a dead-end from which it cannot escape resulting in a very small velocity in the gap. Hence the analysis revealed that the stiffness of the cell membrane and the viscosity of the intracellular fluid relative to that of surrounding fluid, which is the plasma, can greatly affect the deformation and motion of the RBC.

The second area is similar to the first one but the orientation of the gap of this cluster is east ward and a different entry of the fluid. This resulted in an almost stagnant flow in the gap due to the higher fluid resistance in the gap in comparison with the pathway between the boundaries. This is also in accordance  with the expectations, because the gap creates a large fluid resistance and the fluid flows  with a smaller resistance through the pathway resulting in a preferable path the fluid will take, which is visible in figure 10. This also reveals that when a particular pathway in the arteries is block or narrowly closed, the flow of the RBCs or blood in its entirety may experience a higher fluid resistance due to the opening, and possibly take alternative path if there is any. The block arteries in the human body may cause  the  body  system  to  experience  a  very  poor  regulation  in  the  microcirculation,  transportation  of  oxygen  and  nutrients,  and  the body’s immunological and inflammatory responses.

The  last  area  is  the  area  between  the  majorities  of  the  cross-sections  in  which  the  most  preferable  path  is  examined.  This  path  runs through  the  middle  to  the  right  side  of  the  bottom-left  cluster,  which  can  be  seen  in  figure  11.  This  is  also  in  accordance  with  the expectations, because the resistance the fluid encounters is expected to be higher to the left of the cluster than to the right side. This is due to the small asymmetry between the placements of the three cross-sections visible in area 3. Due to this asymmetry the fluid is expected to follow the path to the right side of the bottom-left cluster. This expectation is in accordance with the obtained result from Matlab.

Finally, the formulated script have provided a simulation technique employed in modeling the flow of red blood cells (RBCs) in blood plasma or arteries using a matlab program which also described the entire and possible analysis.


5.3 Contribution to Knowledge  

From  the  simulation  and  analysis,  it  is  a  possible  fact  that  LBM  can  be  modeled  analytically  and  a  matlab  program  can  be  used  to formulate codes  which is capable of creating vector plots representing the RBCs flow through a stacking pattern and this demonstrates the  possible  behavior  of  the  fluid  when  subjected  to  a  poiseuille  flow  and a  flow  around a  cross-section  using  cylindrical approach to represent the flow behavior of the RBCs in the cardiovascular system or arteries.


5.4 Recommendation

First,  my  recommendation  is  centered  on  the  Matlab  programs  formulated.  From  the  benchmarks  the  computational  program  can  be considered  to  give  similar  results  in  comparison  with  the  analytically  determined  results.  This  can  be  tried  in  3  dimensional  space.

However,  this  remains  uncertain  and  in  order  to  be  sure  what  is  wrong  more  stacking  patterns  have  to  be  analyzed  and  further improvements have to be made in the Matlab program. Since the mass accumulation error is the only mistake that can be noticed from www.ijltemas.in                                                                                                                                                                              Page  186
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the  vector  field  of  the  stacking  pattern  the  Matlab  program  is  not  useless,  it  still  gives  logical  overall  fluid  fields,  but  in  order  to  be completely satisfied further research is needed in order to solve the mass accumulation problem.

Very importantly, to strengthen the research, it is highly recommended to extend the analysis beyond a single RBC stacking pattern and incorporate  a  comparative  study  between  the  D2Q9  lattice  Boltzmann  method  (LBM)  and  commercial  CFD  software  like  CFX  or ANSYS. This comparison will provide valuable insights into the strengths, limitations, and potential biases of each approach, ultimately enhancing the reliability and generalizability of the findings.

However, as with any numerical approach, the topic of computational efficiency and fidelity ought to be considered. This sensitivity is particularly  pertinent  to  the  study  of  RBC  flow  behaviour  which  feature  sizes  such  as  RBC  diameters  which  are  typically  on  th e micrometer  scale.  Correspondingly,  the  scale  of  discretisation  for  the  numerical  model  can  be  on  the  order  of  nanometres  in  order  to preserve the accuracy and fidelity of the simulation. This is problematic for studies that are essentially multiscale in nature, such as the study  of  a  capillary  network  or  an  organ.  The  modelled  domain  in  its  entirety  is  in  several  order  larger  than  the  discretisation  scale required  to  capture  reasonably  correct  flow  physics.  Understandably,  the  computational  cost  for  such  studies  will  be  high.  Th erefore, strategies such as parallel computing techniques for large multiscale RBC simulations need to be developed in order to study the many practical  biological  systems.  From  the  perspective  of  applied  models,  many  studies  are  trending  towards  tackling  large  multiscale problems. Furthermore, the popularity of multicore computing provides a huge potential for more efficient computational algorithms for solving mathematical RBC models numerically.
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