Optimizing Building Envelope Design for Cooling Loads Reduction in Abuja

Article Sidebar

Main Article Content

John Agmada Bawa
Collins Uchenna Ukpabia

The increasing global urban population and its accompanying increase in energy demands have intensified the need for energy-efficient building designs, particularly in tropical climates like Abuja. This study explores optimizing building envelope components—insulation, high-performance glazing, and green roofs—to mitigate cooling loads and enhance energy efficiency. A theoretical review methodology was employed, synthesizing recent literature to assess the thermal performance of envelope systems. Findings reveal that improvements in insulation, advanced glazing technologies, and green roof integration can significantly reduce cooling energy consumption while promoting sustainability. The study provides practical insights for architects, engineers, and policymakers aiming to achieve thermal comfort and energy efficiency in Abuja’s hot climate.

Optimizing Building Envelope Design for Cooling Loads Reduction in Abuja. (2025). International Journal of Latest Technology in Engineering Management & Applied Science, 13(12), 57-65. https://doi.org/10.51583/IJLTEMAS.2024.131206

Downloads

Downloads

Download data is not yet available.

References

Abuja Climate, Weather By Month, Average Temperature (Nigeria) - Weather Spark. (2024). Weatherspark.com. https://weatherspark.com/y/55097/Average-Weather-

in-Abuja-Nigeria-Year-Round#:~:text=In%20Abuja%2C%20the%20wet%20 season,or%20above%20100%C2%B0F.

Booth, A., Sutton, A., & Papaioannou, D. (2021). Systematic approaches to a successful literature review (2nd ed.). SAGE Publications.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa DOI: https://doi.org/10.1191/1478088706qp063oa

Browne, G. R., Hürlimann, A. C., March, A., Bush, J., Warren-Myers, G., & Moosavi,

S. (2024). Better policy to support climate change action in the built environment: A framework to analyse and design a policy portfolio. Land Use Policy, 145, 107268. https://doi.org/10.1016/j.landusepol.2024.107268 DOI: https://doi.org/10.1016/j.landusepol.2024.107268

Chihab, Y., Garoum, M., & Laaroussi, N. (2022). Dynamic thermal performance of multilayer hollow clay walls filled with insulation materials: Toward energy saving in hot climates. Energy and Built Environment. https://doi.org/10.1016/j. enbenv.2022.08.001

Dong, Y., Kong, J., Mousavi, S., Behzad Rismanchi, & Yap, P.-S. (2023). Wall Insulation Materials in Different Climate Zones: A Review on Challenges and Opportunities of Available Alternatives. Thermo, 3(1), 38–65. https://doi.org/10.3390/thermo3010003 DOI: https://doi.org/10.3390/thermo3010003

Fayez Aldawi, & Alam, F. (2015). Residential Building Wall Systems. Elsevier EBooks, 169–196. https://doi.org/10.1016/b978-0-12-802397-6.00008-7 DOI: https://doi.org/10.1016/B978-0-12-802397-6.00008-7

Godlewski, T., Mazur, Ł., Szlachetka, O., Witowski, M., Stanisław Łukasik, & Koda,

E. (2021). Design of Passive Building Foundations in the Polish Climatic Conditions. Energies, 14(23), 7855–7855. https://doi.org/10.3390/en14237855 DOI: https://doi.org/10.3390/en14237855

Hameed Al-Awadi, Alajmi, A., & Hosny Abou-Ziyan. (2022). Effect of Thermal Bridges of Different External Wall Types on the Thermal Performance of Residential Building Envelope in a Hot Climate. Buildings, 12(3), 312–312. https://doi. org/10.3390/buildings12030312 DOI: https://doi.org/10.3390/buildings12030312

Iwona Pokorska-Silva, Kadela, M., Bozena Orlik-Kozdon, & Fedorowicz, L. (2021). Calculation of Building Heat Losses through Slab-on-Ground Structures Based on Soil Temperature Measured In Situ. Energies, 15(1), 114–114. https://doi.org/10.3390/ en15010114 DOI: https://doi.org/10.3390/en15010114

Jamei, E., Chau, H. W., Seyedmahmoudian, M., Mekhilef, S. S., & Sami, F. A. (2023). Green roof and energy – role of climate and design elements in hot and temperate climates. Heliyon, 9(5), e15917. https://doi.org/10.1016/j.heliyon.2023.e15917 DOI: https://doi.org/10.1016/j.heliyon.2023.e15917

Mahmoud Magzoub, Mohammed, M. A., Budaiwi, I. M., & Al-Homoud, M. S. (2024). Assessment of thermal performance of energy-active window systems in hot climates. Energy and Buildings, 318, 114473–114473. https://doi.org/10.1016/j. enbuild.2024.114473 DOI: https://doi.org/10.1016/j.enbuild.2024.114473

Mirrahimi, S., Mohamed, M. F., Haw, L. C., Ibrahim, N. L. N., Yusoff, W. F. M., & Aflaki, A. (2016). The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate. Renewable and Sustainable Energy Reviews, 53, 1508–1519. https://doi.org/10.1016/j.rser.2015.09.055 DOI: https://doi.org/10.1016/j.rser.2015.09.055

Nations, U. (2023). 68% of the world population projected to live in urban areas by 2050, says UN | United Nations. United Nations. https://www.un.org/uk/desa/68- world-population-projected-live-urban-areas-2050-says-un Accessed 20 Nov. 2024

Ngakan Ketut Acwin Dwijendra, Iskandar Muda, Milanes, C. B., Narukullapati Bharath Kumar, Abosinnee, A. S., & Ravil Akhmadeev. (2023). How do green roofs affect per capita energy consumption in residential buildings under various climate conditions? Sustainable Energy Technologies and Assessments, 56, 103127–103127. https://doi.org/10.1016/j.seta.2023.103127 DOI: https://doi.org/10.1016/j.seta.2023.103127

Optimization of building envelopes using indigenous materials to achieve thermal comfort and affordable housing in Abuja, Nigeria. (2021). ResearchGate. https://doi. org/10.1108//IJBPA-01-2021-0009

Ozel, M. (2013). Determination of optimum insulation thickness based on cooling transmission load for building walls in a hot climate. Energy Conversion and Management, 66, 106–114. https://doi.org/10.1016/j.enconman.2012.10.002 DOI: https://doi.org/10.1016/j.enconman.2012.10.002

Petticrew, M., & Roberts, H. (2008). Systematic reviews in the social sciences: A practical guide. Wiley-Blackwell

Pourghorban, A., Kari, B. M., & Solgi, E. (2020). Assessment of reflective insulation systems in wall application in hot-arid climates. Sustainable Cities and Society, 52, 101734. https://doi.org/10.1016/j.scs.2019.101734 DOI: https://doi.org/10.1016/j.scs.2019.101734

Poza-Casado, I., Meiss, A., Padilla-Marcos, M. Á., & Feijó-Muñoz, J. (2020). Airtightness and energy impact of air infiltration in residential buildings in Spain. International Journal of Ventilation, 1–7. https://doi.org/10.1080/14733315.2020.17 77029

Ragab, A., & Abdelrady, A. (2020). Impact of Green Roofs on Energy Demand for Cooling in Egyptian Buildings. Sustainability, 12(14), 5729. https://doi.org/10.3390/ su12145729 DOI: https://doi.org/10.3390/su12145729

Rodríguez-Soria, B., Domínguez-Hernández, J., Pérez-Bella, J. M., & del Coz-Díaz,

J. J. (2014). Review of international regulations governing the thermal insulation requirements of residential buildings and the harmonization of envelope energy loss. Renewable and Sustainable Energy Reviews, 34, 78–90. https://doi.org/10.1016/j. rser.2014.03.009 DOI: https://doi.org/10.1016/j.rser.2014.03.009

Somasundaram, S., Chong, A., Wei, Z., & Thangavelu, S. R. (2020). Energy saving potential of low-e coating based retrofit double glazing for tropical climate. Energy and Buildings, 206, 109570. https://doi.org/10.1016/j.enbuild.2019.109570 DOI: https://doi.org/10.1016/j.enbuild.2019.109570

Technology Roadmap - Energy Efficient Building Envelopes – Analysis - IEA. (2013, December 17). Technology Roadmap - Energy Efficient Building Envelopes – Analysis - IEA. IEA. https://www.iea.org/reports/technology-roadmap-energy- efficient-building-envelopes

Yu, J., Yang, J., & Xiong, C. (2015). Study of dynamic thermal performance of hollow block ventilated wall. Renewable Energy, 84, 145–151. https://doi.org/10.1016/j. renene.2015.07.020 DOI: https://doi.org/10.1016/j.renene.2015.07.020

Article Details

How to Cite

Optimizing Building Envelope Design for Cooling Loads Reduction in Abuja. (2025). International Journal of Latest Technology in Engineering Management & Applied Science, 13(12), 57-65. https://doi.org/10.51583/IJLTEMAS.2024.131206