The Big Bang Explosion as An Icequake: A Novel Model for The Origin of The Universe Within A Rotating Tectonic Iceball

Article Sidebar

Main Article Content

Saoussan Kallel-Jallouli

Abstract: While the Big Bang theory remains foundational to cosmology, critical questions persist regarding the initial singularity and pre-Bang conditions.


We propose a novel high-energy cosmological mechanism for the origin of the observable universe, modeled as a catastrophic icequake within the crust of a rotating tectonic iceball of cosmological scale, termed Feluc, embedded in a vast, cold medium we refer to as the Old-Water. In this framework, mechanical stress accumulation and sudden fracture in Feluc’s crystalline outer shell release a burst of energy sufficient to initiate sublimation, dissociation, and ionization of H₂O ice, giving rise to a rapidly expanding, rotating plasma cloud: the nascent B-universe. The model preserves energy conservation by linking cosmic expansion to ongoing progressive sublimation of the Last Scattering Surface (LSS), the spherical icy boundary of Feluc's cavity preserving the B-universe.


The Cosmic Microwave Background (CMB) is recast as thermal radiation emitted from the LSS. Observed temperature anisotropies in the CMB are interpreted as projections of density variations within Feluc’s crust, offering a physically grounded mechanism for primordial fluctuations.


By bridging glaciology, thermodynamics, and high-energy astrophysics, the model generates testable predictions that both challenge conventional cosmological theories and provide innovative solutions to persistent cosmological problems, while establishing new observational constraints for probing the universe's formation through verifiable physical mechanisms rather than abstract mathematical singularities.


The unification of planetary-scale physics with high-energy astrophysical phenomena creates a robust, observationally constrained alternative to traditional creation paradigms.

The Big Bang Explosion as An Icequake: A Novel Model for The Origin of The Universe Within A Rotating Tectonic Iceball. (2025). International Journal of Latest Technology in Engineering Management & Applied Science, 14(4), 350-365. https://doi.org/10.51583/IJLTEMAS.2025.140400038

Downloads

References

Arasa, C.; Andersson, S.; Cuppen, H. M.; van Dishoeck, E. F.; Kroes, G J. (2010). Molecular dynamics simulations of the ice temperature, dependence of water ice photodesorption. J. Chem. Phys. 132, 184510. DOI: https://doi.org/10.1063/1.3422213

Benedikter, A., Matar, J., Nagai, M., Otto, T., Hussmann, H., et al. (2024). A fractionated radar sounder concept for subsurface exploration of Saturn’s icy moon Enceladus. In EUSAR 2024; 15th European Conference on Synthetic Aperture Radar (pp. 1334-1339). VDE.‏ DOI: https://doi.org/10.5194/egusphere-egu25-21319

Blankenship, D. D.; Moussessian, A.; Chapin, E.; Young, D. A.; Wesley Patterson, G.; Plaut, J. J.; et al. (2024). Radar for Europa assessment and sounding: ocean to near-surface (REASON). Space science reviews, 220(5), 51 DOI: https://doi.org/10.1007/s11214-024-01072-3

Bruzzone, L.; Plaut, J.; Alberti, G.; Blankenship, D.D.; Bovolo, F.; Campbell, et al. (2015), The Radar for Icy Moon Exploration (RIME) on the JUICE Mission. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 14–18 December 2015, p. P53G-01

Campbell, B. A. ; Morgan, G. A.; & Sánchez‐Cano, B. (2024). SHARAD mapping of Mars dayside ionosphere patterns: Relationship to regional geology and the magnetic field. Geophysical Research Letters, 51(4), e2023GL105758.‏ DOI: https://doi.org/10.1029/2023GL105758

Christie, J. K.; Guthrie, M., Tulk, C. A., Benmore, C. J., Klug, D. D., Taraskin, S. N., & Elliott, S. R. (2005). Modeling the atomic structure of very high density amorphous ice. Phys. Rev. B. 72, 012201 DOI: https://doi.org/10.1103/PhysRevB.72.012201

Clements, D. L. (2017). An introduction to the Planck mission. Contemporary Physics, 58(4), 331-348 DOI: https://doi.org/10.1080/00107514.2017.1362139

Connerney, J.E.P.; Adriani, A.; Allegrini, F.; Bagenal, F., Bolton, S.J.; et al. (2017). Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science 356:826–32 DOI: https://doi.org/10.1126/science.aam5928

Eriksen, H. K.; Hansen, F. K.; Banday, A. J.; Górski, K. M.; & Lilje, P. B. (2004). Asymmetries in the Cosmic Microwave Background anisotropy field. The Astrophysical Journal, 605(1), 14.‏ DOI: https://doi.org/10.1086/382267

Evans, L. G.; Peplowski, P. N.; Rhodes, E. A.; Lawrence, D. J.; McCoy, T. J.; Nittler, L. R.; et al. (2012). Major‐element abundances on the surface of Mercury: Results from the MESSENGER Gamma‐Ray Spectrometer. Journal of Geophysical Research: Planets, 117(E12) DOI: https://doi.org/10.1029/2012JE004178

Filacchione, G. I. A. N. R. I. C. O. ; De Sanctis, M. C.; Capaccioni, F. A. B. R. I. Z. I. O. ; Raponi, A. ; Tosi, F. ; Ciarniello, M. ; et al. (2016). Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Nature, 529(7586), 368-372.‏

Fougere, N.; Altwegg, K.; Berthelier, J. J.; Bieler, A., Bockelee-Morvan, D.; et al. (2016). Three-dimensional direct simulation Monte-Carlo modeling of the coma of comet 67P/Churyumov-Gerasimenko observed by the VIRTIS and ROSINA instruments on board Rosetta. Astronomy & Astrophysics, 588, A134.‏ DOI: https://doi.org/10.1051/0004-6361/201527889

Fraser, H. J.; Collings, M. P.; McCoustra, M. R.; & Williams, D. A. (2001). Thermal desorption of water ice in the interstellar medium. Monthly Notices of the Royal Astronomical Society, 327(4), 1165-1172.‏ DOI: https://doi.org/10.1046/j.1365-8711.2001.04835.x

Gladstone, GR; Persyn, SC; Eterno, JS; Walther, BC; Slater, DC; et al. (2017). The ultraviolet spectrograph on NASA's Juno mission. Space Sci. Rev. 213:447–73 DOI: https://doi.org/10.1007/s11214-014-0040-z

Goddi, C.; Marti-Vidal, I.; Messias, H.; Crew, G. B.; Herrero-Illana, R.; Impellizzeri, V.; et al. (2019). Calibration of ALMA as a phased array. ALMA observations during the 2017 VLBI campaign. Publications of the Astronomical Society of the Pacific, 131(1001), 075003. DOI: https://doi.org/10.1088/1538-3873/ab136a

Gupta, R. P. (2023). JWST early Universe observations and ΛCDM cosmology. Monthly Notices of the Royal Astronomical Society, 524(3), 3385-3395 DOI: https://doi.org/10.1093/mnras/stad2032

Hayne, P. O. ; Aharonson, O. ; & Schörghofer, N. (2021). Micro cold traps on the Moon. Nature Astronomy, 5(2), 169-175.‏ DOI: https://doi.org/10.1038/s41550-020-1198-9

Herbst, E. & Van Dishoeck, E. F. (2009). Complex organic interstellar molecules. Annual Review of Astronomy and Astrophysics, 47(1), 427-480.‏ DOI: https://doi.org/10.1146/annurev-astro-082708-101654

Holmstrom, M. ; Voshchepynets, A.; Barabash, S. ; Mata, S. R. ; Sánchez-Cano, B. ; Lester, M. ; et al. (2025). Mars Express investigations of the Martian ionosphere using ASPERA-3 and new MARSIS fixed frequency modes. Advances in Space Research. DOI: https://doi.org/10.1016/j.asr.2025.02.005

Hylan, J. E.; Bolcar, M. R.; Crooke, J.; Bronke, G.; Collins, C.; Corsetti, J.; et al. (2019, March). The large uv/optical/lnfrared surveyor (luvoir): Decadal mission concept study update. In 2019 IEEE Aerospace Conference (pp. 1-15). IEEE.‏ DOI: https://doi.org/10.1109/AERO.2019.8741781

Jarosik, N.; Bennett, C. L.; Dunkley, J.; Gold, B.; Greason, M. R.; Halpern, M.; et al. (2011). Seven-year wilkinson microwave anisotropy probe (WMAP*) observations: Sky maps, systematic errors, and basic results. The Astrophysical Journal Supplement Series, 192(2), 14. DOI: https://doi.org/10.1088/0067-0049/192/2/14

Jenniskens, P., Blake, D. F., Wilson, M. A., & Pohorille, A. (1995). High-density amorphous ice, the frost on interstellar grains. The Astrophysical Journal, 455(NAS 1.15: 207251).‏ DOI: https://doi.org/10.1086/176585

Kallel-Jallouli, S. (2021a), The mystery of time I. A new model to solve the enigma of Dark Matter, Internationl Kindle, Independent Publishing Platform, ISBN-13: 979-8514538751

Kallel-Jallouli, S. (2021b), The mystery of time: A New Solution for Dark Matter and a Better Understanding of Quantum Mechanics. J Pur Appl Math, 5(4): 32-37

Kallel-Jallouli, S. (2021c), A New Solution for Dark Matter and a Better Understanding of Quantum Mechanics. J. Phys. Math. Vol.12, N. 8

Kallel-Jallouli, S. (2021d). A new Geometrical Model to solve the Puzzle of Time and understand the mystery of Dark Matter and the magic of Quantum Mechanics., 5th Conference on Mathematical Science and Applications, KAUST, DOI: 10.13140/RG.2.2.22841.95843

S. Kallel-Jallouli, (2023), Time Dark Matter geometrical model and Newton's law recovery, International Journal of Research and Innovation in Applied Science. Vo. IX, issue III, p. 406-410. DOI: https://doi.org/10.51584/IJRIAS.2024.90337

S. Kallel-Jallouli, (2024a), A new geometrical time model to explain the discrepancy between theoretical and measured velocities, ResearchGate DOI: 10.13140/RG.2.2.18508.39048

Kallel-Jallouli, S. (2024b), No more twin paradox, International Journal of Research and Innovation in Applied Science. Vo. IX, issue III, p. 77-88. DOI: https://doi.org/10.51584/IJRIAS.2024.90308

Kallel-Jallouli, S. (2024c). Keplerian Motion Inside an Isolated Dark Matter Halo and the Hubble’s Law. International Journal of Research and Scientific Innovation, 11(9), 1225-1235.‏ DOI: https://doi.org/10.51244/IJRSI.2024.11090102

Kallel-Jallouli, S. (2024d). Phase Shift of the Keplerian Orbits inside Dark Matter Halos. International Journal of Research and Scientific Innovation, 11(11), 500-517.‏ DOI: https://doi.org/10.51244/IJRSI.2024.11110038

Lawrence, D. J.; Feldman, W. C.; Goldsten, J. O.; Maurice, S.; Peplowski, P. N.; Anderson, B. J.; et al. (2013). Evidence for water ice near Mercury’s north pole from MESSENGER Neutron Spectrometer measurements. Science, 339(6117), 292-296.‏ DOI: https://doi.org/10.1126/science.1229953

Levy, H. (1971). Normal atmosphere: Large radical and formaldehyde concentrations predicted. Science, 173(3992), 141-143.‏ DOI: https://doi.org/10.1126/science.173.3992.141

Lippi, M.; Vander Donckt, M.; Faggi, S.; Moulane, Y.; Mumma, M. J.; Villanueva, G. L.; & Jehin, E. (2023). The volatile composition of C/2021 A1 (Leonard): Comparison between infrared and UV-optical measurements. Astronomy & Astrophysics, 676, A105.‏ DOI: https://doi.org/10.1051/0004-6361/202346775

Loerting, T.; Schustereder, W.; Winkel, K.; Salzmann, C. G.; Kohl, I.; & Mayer, E. (2006). Amorphous ice: Stepwise formation of very-high-density amorphous ice from low-density amorphous ice at 125 K. Physical review letters, 96(2), 025702.‏ DOI: https://doi.org/10.1103/PhysRevLett.96.025702

Martoňák, R.; Donadio, D.; & Parrinello, M. (2005). Evolution of the structure of amorphous ice: From low-density amorphous through high-density amorphous to very high-density amorphous ice. The Journal of chemical physics, 122(13), 134501 DOI: https://doi.org/10.1063/1.1870852

McClure, S. M. (2006). Transport mechanisms in nanoscale amorphous solid water films. The University of Texas at Austin.‏ PhD thesis.

Migliorini, A.; Piccioni, G. I. U. S. E. P. P. E.; Capaccioni, F. A. B. R. I. Z. I. O.; Filacchione, G. I. A. N. R. I. C. O.; Bockelée-Morvan, D.; et al. (2016). Water and carbon dioxide distribution in the 67P/Churyumov-Gerasimenko coma from VIRTIS-M infrared observations. Astronomy & Astrophysics, 589, A45.‏ DOI: https://doi.org/10.1051/0004-6361/201527661

Miles, J.; Idso, S. B.; McKibben, B.; Fishman, J.; & Kalish, R. (1990). Global Alert. The Ozone Pollution Crisis. Journal of Applied Ecology, 27(3), 1093.‏ DOI: https://doi.org/10.2307/2404403

Monks, P. S. (2005). Gas-phase radical chemistry in the troposphere. Chemical Society Reviews, 34(5), 376-395.‏ DOI: https://doi.org/10.1039/b307982c

Muller, R. A. (1978). The cosmic background radiation and the new aether drift. Scientific American, 238(5), 64-80.‏ DOI: https://doi.org/10.1038/scientificamerican0578-64

Newberg, H. J.; Yanny, B.; Rockosi, C.; Grebel, E. K.; Rix, H. W.; Brinkmann, J.; et al. (2002). The ghost of Sagittarius and lumps in the halo of the Milky Way. The Astrophysical Journal, 569(1), 245.‏ DOI: https://doi.org/10.1086/338983

Paganini, L.; Villanueva, G. L.; Roth, L.; Mandell, A. M.; Hurford, T. A.; Retherford, K. D.; & Mumma, M. J. (2020). A measurement of water vapour amid a largely quiescent environment on Europa. Nature Astronomy, 4(3), 266-272.‏ DOI: https://doi.org/10.1038/s41550-019-0933-6

Poole, P. H.; Essmann, U.; Sciortino, F.; & Stanley, H. E. (1993). Phase diagram for amorphous solid water. Physical Review E, 48(6), 4605.‏ DOI: https://doi.org/10.1103/PhysRevE.48.4605

Porco, C. C.; Helfenstein, P.; Thomas, P. C.; Ingersoll, A. P.; Wisdom, J.; West, R.; et al. (2006). Cassini observes the active south pole of Enceladus. science, 311(5766), 1393-1401 DOI: https://doi.org/10.1126/science.1123013

Praveen, T. K., & Velumurgan, A. (2000). PHASE PROPERTIES AND TYPE OF EARTH'S WATER ICE AND SPACE ICES. Icarus, 144, 210-242.‏ DOI: https://doi.org/10.1006/icar.1999.6290

Putzig, N. E.;, Seu, R.; Morgan, G. A.; Smith, I. B.; Campbell, B. A.; Perry, M. R.; & Mastrogiuseppe, M. (2024). Science results from sixteen years of MRO SHARAD operations. Icarus, 419, 115715 DOI: https://doi.org/10.1016/j.icarus.2023.115715

Reedy, R. C. (1978). Planetary gamma-ray spectroscopy (No. LA-UR-78-1211; CONF-780314-3). Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

Schmitt, B.; Quirico, E.; Trotta, F.; & Grundy, W. M. (1998). Optical properties of ices from UV to infrared. In Solar System Ices: Based on Reviews Presented at the International Symposium “Solar System Ices” held in Toulouse, France, on March 27–30, 1995 (pp. 199-240). Springer Netherlands.‏ DOI: https://doi.org/10.1007/978-94-011-5252-5_9

Seaton, K. M.; Cable, M. L.; & Stockton, A. M. (2022). Analytical chemistry throughout this solar system. Annual Review of Analytical Chemistry, 15(1), 197-219 DOI: https://doi.org/10.1146/annurev-anchem-061020-125416

Secrest, N. J.; von Hausegger, S.; Rameez, M.; Mohayaee, R.; Sarkar, S.; & Colin, J. (2021). A test of the cosmological principle with quasars. The Astrophysical journal letters, 908(2), L51.‏ DOI: https://doi.org/10.3847/2041-8213/abdd40

Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.‏

Silk, J. (1994). A short history of the universe. New York.

Smoot, G. F.; Bennett, C. L.; Kogut, A.; Wright, E. L.; Aymon, J.; Boggess, N. W.; et al. (1992). Structure in the COBE differential microwave radiometer first-year maps. Astrophysical Journal, Part 2-Letters (ISSN 0004-637X), vol. 396, no. 1, Sept. 1, 1992, p. L1-L5. Research supported by NASA DOI: https://doi.org/10.1086/186504

Sori, M. M. ; Bapst, J.; Becerra, P.; & Byrne, S. (2019). Islands of ice on Mars and Pluto. Journal of Geophysical Research: Planets, 124(10), 2522-2542.‏ DOI: https://doi.org/10.1029/2018JE005861

Turner, M. S. (1991). Tilted Universe and other remnants of the preinflationary Universe. Physical Review D, 44(12), 3737.‏ DOI: https://doi.org/10.1103/PhysRevD.44.3737

Vasavada, A. R.; Paige, D. A.; & Wood, S. E. (1999). Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus, 141(2), 179-193. https://doi.org/10.1006/icar.1999.6175 DOI: https://doi.org/10.1006/icar.1999.6175

VandenBerg, D. A. (2000). Models for Old, Metal-Poor Stars with Enhanced α-Element Abundances. II. Their Implications for the Ages of the Galaxy’s Globular Clusters and Field Halo Stars. The Astrophysical Journal Supplement Series, 129(1), 315. DOI: https://doi.org/10.1086/313404

Warren, S. G. (2019). Optical properties of ice and snow. Philosophical Transactions of the Royal Society A, 377(2146), 20180161‏. http://dx.doi.org/10.1098/rsta.2018.0161 DOI: https://doi.org/10.1098/rsta.2018.0161

Winkel, K.; Mayer, E.; & Loerting, T. (2011). Equilibrated high-density amorphous ice and its first-order transition to the low-density form. The Journal of Physical Chemistry B, 115(48), 14141-14148.‏ DOI: https://doi.org/10.1021/jp203985w

Yoshimura, Y.; Mao, H. K.; & Hemley, R. J. (2006a). Direct transformation of ice VII′ to low-density amorphous ice. Chemical physics letters, 420(4-6), 503-506. DOI: https://doi.org/10.1016/j.cplett.2006.01.024

Yoshimura, Y.; Stewart, S. T.; Somayazulu, M.; Mao, H. K.; & Hemley, R. J. (2006b). High-pressure x-ray diffraction and Raman spectroscopy of ice VIII. The Journal of chemical physics, 124(2).‏ DOI: https://doi.org/10.1063/1.2140277

Yoshimura, Y.; Stewart, S. T.; Mao, H. K.; & Hemley, R. J. (2007). In situ Raman spectroscopy of low-temperature/high-pressure transformations of H2O. The Journal of chemical physics, 126(17), 174505.‏ DOI: https://doi.org/10.1063/1.2720830

Yoshimura, Y.; Stewart, S. T.; Somayazulu, M.; Mao, H. K.; & Hemley, R. J. (2011). Convergent Raman features in high density amorphous ice, ice VII, and ice VIII under pressure. The Journal of Physical Chemistry B, 115(14), 3756-3760.‏ DOI: https://doi.org/10.1021/jp111499x

Article Details

How to Cite

The Big Bang Explosion as An Icequake: A Novel Model for The Origin of The Universe Within A Rotating Tectonic Iceball. (2025). International Journal of Latest Technology in Engineering Management & Applied Science, 14(4), 350-365. https://doi.org/10.51583/IJLTEMAS.2025.140400038