AI-Driven Model for Contract Law Cases

Article Sidebar

Main Article Content

Nnaemeka .C Onyemelukwe
Ogochukwu C Okeke

Abstract: The subjective nature of human analysis results in inconsistent decision-making, which seriously jeopardizes the accuracy and fairness of the verdicts in contract disputes. Legal practitioners confront the difficult task of organizing and evaluating numerous precedent/statutes case materials promptly as the amount of contracts keeps increasing. This time constraint not only makes it more difficult to resolve contract issues on time but also makes the legal system more complicated and unclear. There has never been a greater need for contract litigation to undergo an extensive change. The researcher proposed two complementary methods for retrieving legal documents: BM25 and an aggregated Bidirectional Long Short-Term Memory (BiLSTM) model with a Convolution Neural Network (CNN)

AI-Driven Model for Contract Law Cases . (2024). International Journal of Latest Technology in Engineering Management & Applied Science, 13(7), 175-180. https://doi.org/10.51583/IJLTEMAS.2024.130721

Downloads

Downloads

Download data is not yet available.

References

Ahmad, S., Asghar, M. Z., Alotaibi, F. M., & Al‐Otaibi, Y. D. (2022). A hybrid CNN + BILSTM deep learning-based DSS for efficient prediction of judicial case decisions. Expert Systems With Applications, 209, 118318. https://doi.org/10.1016/j.eswa.2022.118318. DOI: https://doi.org/10.1016/j.eswa.2022.118318

Branting, L.K.: Reasoning with Rules and Precedents: A Computational Model of Legal Analysis. Kluwer Academic Publishers, Dordrect/Boston/London (2000) DOI: https://doi.org/10.1007/978-94-017-2848-5

Gomede, E., PhD. (2023, September 2). Understanding the BM25 ranking Algorithm - Everton Gomede, PhD - medium. Medium. https://medium.com/@evertongomede/understanding-the-bm25-ranking-algorithm-19f6d45c6ce

Governatori, G., Bench-Capon, T., Verheij, B., Araszkiewicz, M., Francesconi, E., & Grabmair, M. (2022). Thirty years of Artificial Intelligence and Law: the first decade. Artificial Intelligence and Law, 30(4), 481–519. https://doi.org/10.1007/s10506-022-09329-4 DOI: https://doi.org/10.1007/s10506-022-09329-4

Hassan, M. U. (2022). Technology Assisted Review of Legal Documents. RIT Scholar Works. https://scholarworks.rit.edu/theses/11395/

Jelali, S. E., Fersini, E., & Messina, E. (2015). Legal retrieval as support to eMediation: matching disputant’s case and court decisions. Artificial Intelligence and Law, 23(1), 1–22. https://doi.org/10.1007/s10506-015-9162-1. DOI: https://doi.org/10.1007/s10506-015-9162-1

Rhanoui, M., Mikram, M., Yousfi, S., & Barzali, S. (2019). A CNN-BILSTM model for Document-Level Sentiment Analysis. Machine Learning and Knowledge Extraction, 1(3), 832–847. https://doi.org/10.3390/make1030048 DOI: https://doi.org/10.3390/make1030048

Publications - Dr. B.J.G. (Bas) Testerink - Utrecht University. (2022). https://www.uu.nl/staff/BJGTesterink/Publications

Sampath, K., & Thenmozhi, D. (2022a). PReLCaP : Precedence Retrieval from Legal Documents Using Catch Phrases. Neural Processing Letters/Neural Processing Letters, 54(5), 3873–3891. https://doi.org/10.1007/s11063-022-10791-z DOI: https://doi.org/10.1007/s11063-022-10791-z

Thomson Reuters Corporation. (2024, January 25). How AI and machine learning are shaping legal strategy. https://www.thomsonreuters.com/en/careers/careers-blog/how-ai

Article Details

How to Cite

AI-Driven Model for Contract Law Cases . (2024). International Journal of Latest Technology in Engineering Management & Applied Science, 13(7), 175-180. https://doi.org/10.51583/IJLTEMAS.2024.130721

Similar Articles

You may also start an advanced similarity search for this article.