Investigation and effect of PVC and PVTMS on sintering, physical and mechanical features of chipboard wood

Article Sidebar

Main Article Content

Roghaiyeh Mazloumihaghghi

Due to their unique combination of properties, wood-plastic composites (WPC) have proven to be a promising alternative to conventional wood and plastic materials in various applications. This article provides a new insight into WPCs consisting of chipboard wood as matrix and polyvinyl chloride (PVC) and poly vinyl trimtehoxy silane (PVTMS) as reinforcement. Overall, this paper highlights the significant advances and opportunities in the field of wood-polymer composites and their potential as sustainable, high-performance materials with a wide range of applications. Continuous research and development efforts are essential to further improve the properties and expand the use of WPC in various industries. In the manufacturing process, wood and thermoplastic polymers are blended together, often using additives and binders to improve compatibility and performance. The resulting composites have desirable properties, such as a high strength-to-weight ratio and the ability to be molded into complex shapes. The differential scanning calorimetry (DSC), flourier transform infrared (FTIR), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy and scanning Electron Microscopy (SEM) characteristics and mechanical properties were discussed in detail. As a result, the composite material sintered at 80 ℃ showed better mechanical behavior, with the compressive strength calculated to be 28.73 MPa.

Investigation and effect of PVC and PVTMS on sintering, physical and mechanical features of chipboard wood. (2024). International Journal of Latest Technology in Engineering Management & Applied Science, 13(5), 38-45. https://doi.org/10.51583/IJLTEMAS.2024.130506

Downloads

Downloads

Download data is not yet available.

References

T. Nishimura, Chipboard, oriented strand board (OSB) and structural composite lumber, Wood Compos. (2015) 103–121. https://doi.org/10.1016/B978-1-78242-454-3.00006-8. DOI: https://doi.org/10.1016/B978-1-78242-454-3.00006-8

J. Shi, H. Yu, W. Qin, W. Yang, X. Zhuang, F. Rao, M. Yin, Z. Ban, Fabrication of a new bamboo composite with large-size high-quality flattened surface, Ind. Crops Prod. 209 (2024) 117953. https://doi.org/ 10.1016/J.INDCROP. 2023. 117953. DOI: https://doi.org/10.1016/j.indcrop.2023.117953

P. Marchetti, A. Marcon, G. Pesce, G. Paolo, L. Guarda, V. Pironi, M.E. Fracasso, P. Ricci, R. de Marco, Children living near chipboard and wood industries are at an increased risk of hospitalization for respiratory diseases: A prospective study, Int. J. Hyg. Environ. Health. 217 (2014) 95–101. https://doi.org/10.1016/J.IJHEH.2013.03.015. DOI: https://doi.org/10.1016/j.ijheh.2013.03.015

G. Toscano, V. Maceratesi, E. Leoni, P. Stipa, E. Laudadio, S. Sabbatini, FTIR spectroscopy for determination of the raw materials used in wood pellet production, Fuel. 313 (2022) 123017. https://doi.org/10.1016/J.FUEL.2021.123017. DOI: https://doi.org/10.1016/j.fuel.2021.123017

H. Zhang, Z. Ling, S. Zhou, X. Fang, W. Zhang, Preparation and characteristic of wood-based inorganic composite phase change material with effective anisotropic thermal conductivity for thermal energy storage, Sol. Energy Mater. Sol. Cells. 251 (2023) 112172. https://doi.org/10.1016/J.SOLMAT.2022.112172. DOI: https://doi.org/10.1016/j.solmat.2022.112172

S. Zheng, M. Chen, J. Wu, J. Xu, Effect of heat treatment on properties and interfacial compatibility of poplar veneer/ polyethylene film composite plywood, Polym. Test. 122 (2023) 108006. https://doi.org/10.1016/J. POLYMERTESTING. 2023.108006. DOI: https://doi.org/10.1016/j.polymertesting.2023.108006

J. Hong, Z. Wang, L. Li, C. Guo, Value-added utilization of corncob hydrolysis residues: Preparation of reinforced wood-plastic composite with highly water resistance and decay resistance, Ind. Crops Prod. 195 (2023) 116497. https:// doi.org/ 10.1016/J.INDCROP.2023.116497. DOI: https://doi.org/10.1016/j.indcrop.2023.116497

L. Bu, Y. Tang, Y. Gao, H. Jian, J. Jiang, Comparative characterization of milled wood lignin from furfural residues and corncob, Chem. Eng. J. 175 (2011) 176–184. https://doi.org/10.1016/J.CEJ.2011.09.091. DOI: https://doi.org/10.1016/j.cej.2011.09.091

J. Seo, H. Kim, S. Jeon, S. Valizadeh, Y. Khani, B.H. Jeon, G.H. Rhee, W.H. Chen, S. Lam, M.A. Khan, Y.K. Park, Thermocatalytic conversion of wood-plastic composite over HZSM-5 catalysts, Bioresour. Technol. 373 (2023) 128702. https://doi.org/10.1016/J.BIORTECH.2023.128702. DOI: https://doi.org/10.1016/j.biortech.2023.128702

X. Qi, Y. Shang, Z. Ding, W. Wei, Particularities and research progress of the cutting machinability of wood-plastic composites, Mater. Today Commun. 37 (2023) 106924. https://doi.org/10.1016/J.MTCOMM.2023.106924. DOI: https://doi.org/10.1016/j.mtcomm.2023.106924

L. Zhao, Y. Wei, F. Xi, Y. He, X. Wang, Experimental investigation on the flexural behavior of aluminum alloy-reinforced wood plastic composite hollow members, Structures. 56 (2023) 104858. https:// doi.org/ 10.1016/J.ISTRUC. 2023.07.048. DOI: https://doi.org/10.1016/j.istruc.2023.07.048

C. Wang, C. Li, S. Zhu, D. Tu, L. Wu, Y. Chen, Y. Guo, Exploring an efficient non-destructive approach to characterize damage behavior and crack propagation of highly-filled wood-plastic composites during three-point bending test, Constr. Build. Mater. 364 (2023) 129920. https://doi.org/10.1016/J.CONBUILDMAT.2022.129920. DOI: https://doi.org/10.1016/j.conbuildmat.2022.129920

L.N. Hilary, S. Sultana, Z. Islam, M.K.U. Sarker, M.J. Abedin, M.M. Haque, Recycling of waste poly(vinyl chloride) fill materials to produce new polymer composites with propylene glycol plasticizer and waste sawdust of Albizia lebbeck wood, Curr. Res. Green Sustain. Chem. 4 (2021) 100221. https://doi.org/10.1016/J.CRGSC.2021.100221. DOI: https://doi.org/10.1016/j.crgsc.2021.100221

D. Zhang, X. Lin, Q. Zhang, X. Ren, W. Yu, H. Cai, Catalytic pyrolysis of wood-plastic composite waste over activated carbon catalyst for aromatics production: Effect of preparation process of activated carbon, Energy. 212 (2020) 118983. https://doi.org/10.1016/J.ENERGY.2020.118983. DOI: https://doi.org/10.1016/j.energy.2020.118983

L. Zhao, F.X. Doctor, Flexural performance of reinforced aluminum–wood–plastic composite beam: An experimental and numerical investigation, Thin-Walled Struct. 180 (2022) 109910. https://doi.org/10.1016/J.TWS.2022.109910. DOI: https://doi.org/10.1016/j.tws.2022.109910

D. Friedrich, Effects on heat storage from hot-pressing of wood-plastic composites for thermoformed climate-regulating building skins, J. Energy Storage. 53 (2022) 105106. https://doi.org/10.1016/J.EST.2022.105106. DOI: https://doi.org/10.1016/j.est.2022.105106

Z. Li, Y. Huang, Z. Zhu, H. Cheng, J. Zhao, M. Yu, W. Xu, Q. Yuan, T. He, S. Wang, Co-pyrolysis of sewage sludge with polyvinyl chloride (PVC)/CaO: Effects on heavy metals behavior and ecological risk, Fuel. 333 (2023) 126281. https:// doi. org/10.1016/J.FUEL.2022.126281. DOI: https://doi.org/10.1016/j.fuel.2022.126281

M. Al-Rubaiai, X. Qi, Z. Frank, R. Tsuruta, U. Gandhi, K.J. Kim, X. Tan, Control-oriented Nonlinear Modeling of Polyvinyl Chloride (PVC) Gel Actuators, IFAC-PapersOnLine. 54 (2021) 304–309. https://doi.org/ 10.1016/ J.IFACOL. 2021.11.191. DOI: https://doi.org/10.1016/j.ifacol.2021.11.191

X. Xu, D. Zhu, X. Wang, L. Deng, X. Fan, Z. Ding, A. Zhang, G. Xue, Y. Liu, W. Xuan, X. Li, J. Makinia, Transformation of polyvinyl chloride (PVC) into a versatile and efficient adsorbent of Cu(II) cations and Cr(VI) anions through hydrothermal treatment and sulfonation, J. Hazard. Mater. 423 (2022) 126973. https://doi.org/ 10.1016/ J. JHAZMAT. 2021.126973. DOI: https://doi.org/10.1016/j.jhazmat.2021.126973

J. Song, J. Wang, J. Sima, Y. Zhu, X. Du, P.T. Williams, Q. Huang, Dechlorination of waste polyvinyl chloride (PVC) through non-thermal plasma, Chemosphere. 338 (2023) 139535. https://doi.org/10.1016/J.CHEMOSPHERE.2023. 139535. DOI: https://doi.org/10.1016/j.chemosphere.2023.139535

M. Fashandi, S. Karamikamkar, S.N. Leung, H.E. Naguib, J. Hong, B. Liang, C.B. Park, Synthesis, structures and properties of hydrophobic Alkyltrimethoxysilane-Polyvinyltrimethoxysilane hybrid aerogels with different alkyl chain lengths, J. Colloid Interface Sci. 608 (2022) 720–734. https://doi.org/10.1016/J.JCIS.2021.09.128. DOI: https://doi.org/10.1016/j.jcis.2021.09.128

O.A. Tafreshi, Z. Saadatnia, S. Ghaffari-Mosanenzadeh, T. Chen, S. Kiddell, C.B. Park, H.E. Naguib, Flexible and shape-configurable PI composite aerogel films with tunable dielectric properties, Compos. Commun. 34 (2022) 101274. https:// doi.org/10.1016/J.COCO.2022.101274. DOI: https://doi.org/10.1016/j.coco.2022.101274

M. Rabiei, A. Palevicius, R. Ebrahimi-Kahrizsangi, S. Nasiri, A. Vilkauskas, G. Janusas, New Approach for Preparing In Vitro Bioactive Scaffold Consisted of Ag-Doped Hydroxyapatite + Polyvinyltrimethoxysilane, Polymers (Basel). 13 (2021) 1695. https://doi.org/10.3390/polym13111695. DOI: https://doi.org/10.3390/polym13111695

M. Rabiei, M.S. Raziyan, R. Ebrahimi-Kahrizsangi, S. Nasiri, A. Palevicius, G. Janusas, A. Vilkauskas, Effects of 5 wt.% Polycaprolactone, Polyhydroxybutyrate and Polyvinyltrimethoxysilane on the Properties of Ag/Zn/Mg Alloy, Mater. 2022, Vol. 15, Page 5421. 15 (2022) 5421. https://doi.org/10.3390/MA15155421. DOI: https://doi.org/10.3390/ma15155421

S. Nasiri, M. Hosseinnezhad, M. Rabiei, A. Palevicius, G. Janusas, The effect of calcination temperature on the photophysical and mechanical properties of copper iodide (5 mol%)–doped hydroxyapatite, Opt. Mater. (Amst). 121 (2021) 111559. https://doi.org/10.1016/J.OPTMAT.2021.111559. DOI: https://doi.org/10.1016/j.optmat.2021.111559

A. Bryś, J. Bryś, E. Ostrowska-Ligęza, A. Kaleta, K. Górnicki, S. Głowacki, P. Koczoń, Wood biomass characterization by DSC or FT-IR spectroscopy, J. Therm. Anal. Calorim. 126 (2016) 27–35. https://doi.org/10.1007/S10973-016-5713-2/ TABLES/1. DOI: https://doi.org/10.1007/s10973-016-5713-2

P.R. Kubade, R. Senanayake, Studies on thermo-mechanical properties of HNTs filled ABS/PVC composites, Mater. Today Proc. 59 (2022) 248–252. https://doi.org/10.1016/J.MATPR.2021.11.104. DOI: https://doi.org/10.1016/j.matpr.2021.11.104

F.L. Scholten, n. v. Veg-Gasinstituut, DSC investigations of PVC and PVC/CPE gas pipes, Thermochim. Acta. 93 (1985) 203–206. https://doi.org/10.1016/0040-6031(85)85052-8. DOI: https://doi.org/10.1016/0040-6031(85)85052-8

C. Song, X. Zhang, Y. Ma, W. Yang, Synthesis internal-plasticized PVC copolymer resin from industrial application view: Copolymerization of vinyl chloride with poly(ethylene glycol) monomethyl ether methacrylate via suspension polymerization, Polymer (Guildf). 290 (2024) 126562. https://doi.org/10.1016/J.POLYMER.2023.126562. DOI: https://doi.org/10.1016/j.polymer.2023.126562

H. Cao, W. Feng, H. Zeng, T. Jin, Y. Lin, L. Xie, X. Chai, K. Xu, G. Du, L. Zhang, A innovative application of lactose cross-linked adhesive in plywood using hyperbranched network structure with high performance, React. Funct. Polym. 191 (2023) 105698. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2023.105698. DOI: https://doi.org/10.1016/j.reactfunctpolym.2023.105698

T. Höfer, A. Rössler, O.I. Strube, Thermal debonding on demand for wood coatings via nitrocellulose-based primer, Prog. Org. Coatings. 188 (2024) 108215. https://doi.org/10.1016/J.PORGCOAT.2024.108215. DOI: https://doi.org/10.1016/j.porgcoat.2024.108215

I. Turku, A. Keskisaari, T. Kärki, A. Puurtinen, P. Marttila, Characterization of wood plastic composites manufactured from recycled plastic blends, Compos. Struct. 161 (2017) 469–476. https://doi.org/ 10.1016/J.COMPSTRUCT. 2016. 11. 073. DOI: https://doi.org/10.1016/j.compstruct.2016.11.073

J. Gao, W. Lin, S. Lin, X. Zhang, W. Yang, R. Li, Environment-Friendly and Two-Component Method for Fabrication of Highly Hydrophobic Wood Using Poly(methylhydrogen)siloxane, Polym. 2021, Vol. 13, Page 124. 13 (2020) 124. https://doi.org/10.3390/POLYM13010124. DOI: https://doi.org/10.3390/polym13010124

L.L. Wang, N. Li, T. Zhao, B. Li, Y. Ji, Magnetic Properties of FeNi3 Nanoparticle Modified Pinus radiata Wood Nanocomposites, Polym. 2019, Vol. 11, Page 421. 11 (2019) 421. https://doi.org/10.3390/POLYM11030421. DOI: https://doi.org/10.3390/polym11030421

R. Fu, C. Dong, Y. Zhang, C. Sun, R. Qu, C. Ji, Y. Zhang, PPTA-oligomer functionalized multiwalled carbon nanotubes synthesized by “one-pot” method for reinforcement of polyvinyl chloride, J. Mater. Sci. 54 (2019) 11804–11817. https://doi.org/10.1007/S10853-019-03730-2/METRICS. DOI: https://doi.org/10.1007/s10853-019-03730-2

T. Deng, S. Li, P. Jia, N. Yao, H. Ding, L. Xu, Y. Zhang, X. Yang, M. Li, Self-Plasticized PVC Prepared by Introducing Fatty Acid to the PVC with Triglycidyl Isocyanurate as an Intermediate Bridge, ACS Omega. 7 (2022) 35694–35704. https://doi.org/10.1021/ACSOMEGA.2C03655/SUPPL_FILE/AO2C03655_SI_001.PDF. DOI: https://doi.org/10.1021/acsomega.2c03655

G. Nguila Inari, M. Pétrissans, S. Dumarcay, J. Lambert, J.J. Ehrhardt, M.S. ˇernek, P. Gérardin, Limitation of XPS for analysis of wood species containing high amounts of lipophilic extractives, (n.d.). https://doi.org/10.1007/s00226-010-0324-8. DOI: https://doi.org/10.1007/s00226-010-0324-8

J. Bañuls-Ciscar, D. Pratelli, M.L. Abel, J.F. Watts, Surface characterisation of pine wood by XPS, Surf. Interface Anal. 48 (2016) 589–592. https://doi.org/10.1002/SIA.5960. DOI: https://doi.org/10.1002/sia.5960

R. de Abreu Neto, J.T. Lima, L.M. Takarada, P.F. Trugilho, Effect of thermal treatment on fiber morphology in wood pyrolysis, Wood Sci. Technol. 55 (2021) 95–108. https://doi.org/10.1007/S00226-020-01238-6/METRICS. DOI: https://doi.org/10.1007/s00226-020-01238-6

M.E. Gómez Yepes, L. V. Cremades, Characterization of Wood Dust from Furniture by Scanning Electron Microscopy and Energy-dispersive X-ray Analysis, Ind. Health. 49 (2011) 492–500. https://doi.org/10.2486/INDHEALTH.MS1204. DOI: https://doi.org/10.2486/indhealth.MS1204

Chapter 1 Hooke’s law, Poisson’s relation and waves along thin bars, Methods Geochemistry Geophys. 39 (2005) 1–82. https://doi.org/10.1016/S0076-6895(05)80003-4. DOI: https://doi.org/10.1016/S0076-6895(05)80003-4

S. Kopylov, Z.B. Chen, M.A.A. Abdelkareem, Acceleration based ground-hook control of an electromagnetic regenerative tuned mass damper for automotive application, Alexandria Eng. J. 59 (2020) 4933–4946. https://doi.org/ 10. 1016/ J.AEJ. 2020.09.010. DOI: https://doi.org/10.1016/j.aej.2020.09.010

Article Details

How to Cite

Investigation and effect of PVC and PVTMS on sintering, physical and mechanical features of chipboard wood. (2024). International Journal of Latest Technology in Engineering Management & Applied Science, 13(5), 38-45. https://doi.org/10.51583/IJLTEMAS.2024.130506

Similar Articles

You may also start an advanced similarity search for this article.