On the Exponential Diophantine Equation 2^x+1245^y=z^2
Article Sidebar
Main Article Content
Let x,yand z be non-negative integers. We solve the exponential Diophantine equation 2^x+1,245^y=z^2. The result indicates that the equation has a unique solution,(x,y,z)=(3,0,3).
Downloads
Downloads
References
Acu, D., (2007) On a Diophantine Equation, General Mathematics, 15(4), 145-148.
Aggarwal, S., Swarup, C., Gupta, D., and Kumar, S., (2023) Solution of the Diophantine Equation 143^x+85^y=z^2 , International Journal of Progressive Research in Science and Engineering, 4(02), 5 – 7.
Aggarwal, S., Kumar, S., Gupta, D., and Kumar, S., (2023) Solution of the Diophantine Equation 143^x+485^y=z^2 , International Research Journal of Modernization in Engineering Technology and Science, 5(02), 555 – 558.
Aggarwal, S., Pandey, R., and Kumar, S., (2024) Solution of the Exponential Diophantine Equation 10^x+400^y=z^2 , International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS), 8(2), 38 – 40. DOI: https://doi.org/10.51583/IJLTEMAS.2024.130205
Burshtein, N., (2019) On Solution to the Diophantine Equations 5^x+103^y=z^2 and 5^x+11^y=z^2 with Positive Integers x,y,z, Annals of Pure and Applied Mathematics, 19(1), 75-77. DOI: https://doi.org/10.22457/apam.607v19n1a9
Burton, D. M., (2011) Elementary Number Theory, Seventh Edition, The McGraw-Hill companies.
Jeyakrishnan, G. and Komahan, G., (2017) More on the Diophantine Equation 27^x+2^y=z^2, International Journal for Scientific Research & Development, 4(2), 166-167.
Kaewong, T., Thongnak, S.and Chuayjan, W., (2024) On the Exponential Diophantine Equation 305^x+503^y=z^2 , International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS), 8(2), 79 – 81. DOI: https://doi.org/10.51583/IJLTEMAS.2024.130211
Kumar, S. and Aggarwal, S., (2021) On the Exponential Diophantine Equation 439^p+457^q=r^2 , Journal of Emerging Technologies and innovative Research (JETIR), 8(3), 2357 –2361.
Mihailescu, P., (2004) Primary Cyclotomic Units and a Proof of Catalan’ s Conjecture, Journal fur die Reine und Angewandte DOI: https://doi.org/10.1515/crll.2004.048
Mathematik, 572, 167–195.
Pakapongpun, A.and Chattae, B., (2022) On the Diophantine equation p^x+7^y=z^2, where pis Primes and x,y,z are non-negative integers, International Journal of Mathematics and Computer Science, 17(4), 1535-1540.
Sroysang, B., (2014) More on the Diophantine Equation 3^x+85^y=z^2, International Journal of Pure and Applied Mathematics, 91(1), 131-134. DOI: https://doi.org/10.12732/ijpam.v91i1.13
Suvarnamani, A., (2011) On two Diophantine Equations 4^x+7^y=z^2and4^x+11^y=z^2, Science and Technology RMUTT Journal, 1(1), 25-28.
Tadee, S., (2022) On the Diophantine equation p^x+(p+14)^y=z^2where p,p+14are Primes, Annals of Pure and Applied Mathematics, 26(2), 125-130. DOI: https://doi.org/10.22457/apam.v26n2a09893
Viriyapong, N. and Viriyapong, C., (2023) On the Diophantine equation 255^x+323^y=z^2 , International Journal of Mathematics and Computer Science, 18(3), 521 – 523.
Viriyapong, N. and Viriyapong, C., (2024) On the Diophantine equation 147^x+741^y=z^2 , International Journal of Mathematics and Computer Science, 19(2), 445 – 447.
All articles published in our journal are licensed under CC-BY 4.0, which permits authors to retain copyright of their work. This license allows for unrestricted use, sharing, and reproduction of the articles, provided that proper credit is given to the original authors and the source.