Structural Characterization of High Resolution Aeromagnetic Data for Potentially Mineralized Zones Identification Within the North-Central Basement Complex of Nigeria
PDF
Full Text HTML
EPUB

Keywords

Mineral
Characterization
Basement
Complex
Aeromagnetic

How to Cite

Structural Characterization of High Resolution Aeromagnetic Data for Potentially Mineralized Zones Identification Within the North-Central Basement Complex of Nigeria. (2024). International Journal of Latest Technology in Engineering Management & Applied Science, 13(7), 13-23. https://doi.org/10.51583/IJLTEMAS.2024.130703

Abstract

Abstract: The aim of this study is to identify mineralization zones within the North-Central Basement Complex of Nigeria. The goal was to locate important geological formations and assess the region's suitability for mining exploitation. Several filters were used to enhance the short wavelength anomalies which could give preliminary information about the magnetic minerals present in the study area which spans latitudes 8°00'N to 9°30'N and longitudes 6°30'E to 7°30'E. The total magnetic intensity map revealed overall field strengths ranging from -99.63 nT to 109.33 nT. The filters used are fisrt horizontal and vertical derivatives, analytic signal and 3-D Euler Deconvolution. The first horizontal and first vertical derivatives show structures like lineament that could host to minerals present in the study. The Analytic Signal processing highlighted three distinct magnetic anomaly zones: a low zone (0.004 nT/m to 0.013 nT/m), an intermediate zone (0.016 nT/m to 0.048 nT/m), and a high zone (0.057 nT/m to 0.282 nT/m). The horizontal derivative map displayed both positive and negative anomalies, with values ranging from -0.061 to 0.061 nT/m. The Euler depth analysis suggested the magnetic sources are located at depths greater than 2000 m, between 1000-2000 m, 500-1000 m, and less than 500 m. The lineament map revealed a dominant NE-SW trend, with a less dominant E-W and NW-SE trend within the study area. The high lineament density areas of Kwali, Gwagwalada, Shanzhi, Dadabiri, Checheyi, Pangu, and Suleja correspond to the various mineralization zones identified in the region.

PDF
Full Text HTML
EPUB

References

Abaa, S. I. 1983, “The structure and petrography of alkaline rocks of the Mada Younger Granite Complex, Nigeria”. Journal of African Earth Science, 3, 107–113.

Abdulsalam, N. N., Mallam, A. and Likkason O. K. (2011). Identification of Linear Features using continuation filters over Koton Karke area, Nigeria, from Aeromagnetic data. World Rural Observations, 3(1) 1-8.

Adetona, A. Abbass And Abu Mallam (2013): Investigating the structures within the Lower Benue and Upper Anambra basins, Nigeria, using first Vertical Derivative, Analytical Signal and (CET) centre for exploration targeting plug-in. Earth Science 2013; 2(5): 104-112.

Akande SO, Ojo OJ, Adekeye OA, Ladipo KO, (2006). A Geological Field Duide to the Southern Bida Basin. Nigerian Association of Petroleum Explorationists (NAPE), 24th Annual Conference and Exhibition, Abuja, pp 21.

Andrew J., Alkali A., Salako K. A. & Udensi E. E. (2018): Delineating Mineralisation Zones within the Keffi Abuja Area Using Aeromagnetic Data. Journal of Geography, Environment and Earth Science International 15(3): 1-12, 2018; Article no. JGEESI.37052 ISSN: 2454-735.

Arifin, M.H., Kayode, J.S., Izwan, M.K., Zaid, H.A. & Hussin, H. (2019): Data for the potential gold mineralisation mapping with the applications of Electrical Resistivity Imaging and Induced Polarization geophysical surveys. Data in belief, 22, 830-835.

Arewa James Ogah1 & Fahad Abubakar (2024): Solid mineral potential evaluation using integrated aeromagnetic and aero radiometric datasets. Scientific Reports. 14:1637

Bhattachanya, B.K., 1966. Continuous spectrum of the total magnetic field anomaly due to a rectangular prismatic body. Geophysics 31, 97–121.

Burke, K., Freeth, S. J. & Grant, N. K. The structure and sequence of geological events in the Basement Complex of the Ibadan area Western Nigeria. Precambrian Res. 3, 537–545 (1976).

Dada S. S. (2006). Proterozoic Evolution of Nigeria. In: O. Oshi (Ed.), The Basement Complex of Nigeria and its Mineral Resources (A Tribute to Prof. M. A. O. Rahaman). Akin Jinad & Co. Ibadan, pp29-44.

Ejepu J. S., Abdullahi S., Abdulfatai A. I. and Umar M. U. (2020): Predictive Mapping of the Mineral Potential Using Geophysical and Remote Sensing Datasets in Parts of Federal Capital Territory, Abuja, North-Central Nigeria. Earth Sciences 2020; 9(5): 148-163.

Faruwa, A. R. et al. Airborne magnetic and radiometric mapping for litho-structural settings and its significance for bitumen mineralization over Agbabu bitumen-belt southwestern Nigeria. J. Afr. Earth Sci. 180, 104222 (2021).

Gibert, D. & Galdeano, A. A computer program to perform transformations of gravimetric and aeromagnetic surveys. Comput. Geosci. 11, 553–588 (1985).

Guo, W., Dentith, M. C., Xu, J. & Ren, F. Geophysical exploration for gold in Gansu Province, China. Explor. Geophys. 30, 76–82 (1999).

Hodges G, Amine D. Exploration for gold deposits with airborne geophysics. KEGS PDAC Symposium; 2010

Holden, E. J., Dentith, M. & Kovesi, P. Towards the automated analysis of regional aeromagnetic data to identify regions prospective for gold deposits. Comput. Geosci. 34, 1505–1513 (2008).

Holden, E. J. et al. Automated identification of magnetic responses from porphyry systems. ASEG Extend. Abstracts 2010, 1–4 (2010).

Ladipo KO (1988). Paleogeography, sedimentation and tectonics of the Upper Cretaceous Anambra Basin, south-eastern Nigeria. J. Afr. Earth Sci. 7:865–871.

Lawal, T. O. Integrated aeromagnetic and aero radiometric data for delineating lithologies, structures, and hydrothermal alteration zones in part of southwestern Nigeria. Arab. J. Geosci. 13, 775 (2020).

Leu, L. (1982) Use of Reduction-to-the-Equator Process for Magnetic Data Interpretation. Geophysics, 47, 445.

MacLeod, I.N., Jones, K., Dai, T.F. 1993. 3-D analytic signal in the interpretation of total magnetic field data at low magnetic latitudes. Exploration Geophysics, 24 (3-4), 679-688.

Miller, H. G. & Singh, V. Potential field tilt—A new concept for location of potential field sources. J. Appl. Geophy. 32, 213–217 (1994).

Mohammad G. A., Atef A.M. I., Ahmed A. E., Alhussein A. B., Ali M.M. E. & Yara T. (2017): Analysis and interpretation of aeromagnetic data for Wadi Zeidun area, Central Eastern Desert, Egypt. Egyptian Journal of Petroleum 27 (2018) 285–293.

Nabighian, M.N. and Hansen, R.O. (2001) Unification of Euler and Werner Deconvolution in Three Dimensions via the Generalized Hilbert Transform. Geophysics, 66, 1805-1810.

Nabighian, M.N. (1972): the Analytic Signal of Two-Dimensional Magnetic Bodies with Polygonal Cross-Section: Its Properties and Use for Automated Anomaly Interpretation. Geophysics, 37, 507-517. https://doi.org/10.1190/1.1440276

Nabighian, M.N. (1974) Additional Comments on the Analytic Signal of Two Dimensional Magnetic Bodies with Polygonal Cross-Section. Geophysics, 39, 85-92. https://doi.org/10.1190/1.1440416

Nigerian Geological Survey Agency. Geology and Structural Lineament Map of Nigeria. Abuja: NGSA; 2006

Nigerian Geological Survey Agency, 2010; Airborne Geophysical Digital Data Dissemination Guidelines 1 – 23

Nwajide CS (1990). Sedimentation and paleogeography of the Central Benue Trough, Nigeria. In: Ofoegbu, C. O. (Ed.), The Benue Trough Structure and Evolution. Vieweg, Braunschweig, pp19-38.

Obaje N. G. (2009). Geology and Mineral Resources of Nigeria. Springer Verlag, Heidelberg (Germany), 240pp.

Oguche M., Akanbi, E. S. and O. S. C. (2021): Analysis and interpretation of high resolution aeromagnetic data of Abuja sheet 186 And Gitata sheet 187, Central Nigeria. Science World Journal Vol. 16(No 3) 2021.

Onyedim, G. C., Awoyemi, M. O., Ariyibi, E. A., & Arubayi, J. B. (2007). Aeromagnetic imaging of the basement morphology in part of the Middle Benue Trough, Nigeria. Journal of Mining and Geology, 42(2), 157-163. http://dx.doi.org/10.4314/jmg.v42i2.18856

Okpoli, C. and Akingboye, A. (2016a). Reconstruction and appraisal of Akunu–Akoko area iron ore deposits using geological and magnetic approaches. RMZ – Materials and Geoenvironment (Materiali in geookolje), 63 (1), 19-38.

Oyeniyi, T. O., Salami, A. A. & Ojo, S. B. Magnetic surveying as an aid to geological mapping: A case study from Obafemi Awolowo University Campus in Ile-Ife, Southwest Nigeria. Ife J. Sci. 18, 331–343 (2016).

Pettijohn JF (2004). Sedimentary Rocks, 3rd Edition. CBS Publishers and Distributors, New Delhi, pp 628.

Priscillia E., Abu M. & Abel. U. O. (2021): Interpretation of Aeromagnetic Data of Part of Gwagwalada Abuja Nigeria for Potential Mineral Targets. Journal of Geological Research | Volume 03 | Issue 04 | October 2021.

Reeves, C. (2005). Aeromagnetic Survey Principles, Practice and Interpretation. Geophysics, 1-12.

Reid, A. B., Allsop, J. M., Granser, H., Millett, A. J. T. & Somerton, I. W. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55, 80–91 (1990)

Roest, W. R., Verhoef, J and Pilkington, M. (1992). Magnetic interpretation using the 3D analytic signal. Geophysics, 57, 116-125.

Thompson, D.T. (1973) Identification of Magnetic Source Types Using Equivalent Simple Models. Fall Annual AGU Meeting, San Francisco, 10-13 December 1973.

Salem, A., Williams, S., Fairhead, J.D., Ravat, D., and Smith, R. (2007): Tilt-depth method—a simple depth estimation method using first-order magnetic derivatives: The Leading Edge, v. 26, p. 1502-1505.

Tsepav M. T. & Abu M. (2017): Evaluation of Depth to Magnetic Basement over Some Parts of the Nupe Basin, Nigeria by Source Parameter Imaging Method using aeromagnetic data. International Journal Science and Research Technology. November 2017 Vol.:8, Issue:1.

Wilsher, W.A. (1987) A Structural Interpretation of the Witwatersrand Basin through the Application of Automated Depth Algorithms to Both Gravity and Aeromagnetic Data. M.Sc. Thesis, University of Witwatersrand, Johannesburg.

Downloads

Download data is not yet available.