Bio-Char Used for Carbon Sequestration and to Balance the CO2 Concentration in Atmosphere: A Review
PDF
Full Text HTML
EPUB

Keywords

CO2
positive
negative
balance
Biochar
stabilization

How to Cite

Bio-Char Used for Carbon Sequestration and to Balance the CO2 Concentration in Atmosphere: A Review. (2024). International Journal of Latest Technology in Engineering Management & Applied Science, 13(7), 43-51. https://doi.org/10.51583/IJLTEMAS.2024.130706

Abstract

Abstract: The Carbon concentration in earth is closed system, therefore, the contain of carbon in each elements are different. The concentration of CO2 in atmosphere is lower compared with N2 and O2 gas but CO2 concentration is great effect to the atmosphere temperature, it may cause the global warming and climate change.  The CO2 concentration in atmosphere should be maintained to slower increase in order to reduce the effect of CO2 in atmosphere.  Balancing of carbon positive and negative is concerned to maintain the CO2 concentration in atmosphere. Bio-chars are materials carbon that can be used as soil amendment to increase crop production. Recently, the carbon positive more than the carbon negative, resulted the CO2 concentration in atmosphere was increased gradually. Biochar has been possibility to produce in a large quantity to utilize of waste biomass.  We needs a large quantity of biochar to be   produced and mixed with soil and store in the ground as carbon sequestration, those biochar increase the soil fertility. Scenarios stabilization wedge represents an activity that starts at zero reduction of emissions in 2005 and increase linearly until it accounts for 1 GtC/ year or 1 wedges reduced carbon emissions in the year 2055.

PDF
Full Text HTML
EPUB

References

Anon1, 2015. Trends in Atmospheric Carbon Dioxide. National Oceanic & Atmospheric Administration 2015

Lindsey, R. 2022. Climate Change: Atmospheric Carbon Dioxide. June 23,2022. https://climate. gov/media/13611.

Anon2, 2022. Carbon dioxide now more than 50% higher than pre-industrial levels. National Oceanic & Atmospheric Administration, US Department of Commerce, 3 June 2022.

Kirtman, B. Power, S.B, Adedoyin, J.A., Boer, G.J, Bojarin, R., Camilloni, I, Doblas Reyes, F.J., Fiore, A.M., Kimoto, M., Meehl, G.A. et al. Chapter 11: Near-Term Climate Change: Projections and Predictability. Clim. Change. 2013. Phys. Sci. Basis. Contrib. Work. Gr. I to Fifth Assess. Rep. Intergov. Panel Clim.Chang.2013, No. June,953-1028.

EPA, 2013. U.S. EPA. Report on the 2013 U.S. Environmental Protection Agency (EPA) International Decontamination Research and Development Conference. Research Triangle Park, NC, November 05 - 07, 2013. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-14/210, 2014.

Zhai, Y., Wang, S. and Chuang, S. 2019. The nature of Hydrogen Bonding in Adsorbed CO2 and H2O on Solid Amines in CO2 Capture. Catalysis Series, 36, 503-526

Feygina, I., Jost, J.T. and Goldsmith, R.E. 2010. System Justification, the Denial of Global Warming, and the Possibility of” System Sanctioned Change”, New York University, Feb. 28.

Selin, N.E. 2024. Carbon sequestration. The Encyclopaedia Britannica, Updated: Apr 26, 2024

Mulligan, J., Ellison, G., Levin, K., Lebling, K. and Rudee, A. 6 Ways to Remove Carbon Pollution from the Sky. World Resources Institute. June 9, 2020.

Hellmers, H. 1964. An evaluation of the photosynthetic of efficiency of Forests. In The Quarterly Review of Biology, vol.39, No, 3: pp.249-257.

Schumer, C. and Lebling, K. 2022. How are Countries Counting on Carbon Removal to Meet Climate Goals? World Resources Institute, 40 Years. March 16, 2022.

Vujasin, M. 2022. Soil carbon storage in agriculture for climate and trade, bonds and profits. Balkan Green Energy News. November 6, 2022.

Gattinger, A., Muller, A., Haeni, M., Skinner, C., Fliessbach, A., Buchmann, N., … & Niggli, U. (2012). Enhanced topsoil carbon stocks under organic farming. Proceedings of the National Academy of Sciences, 109(44), 18226-18231.

Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. science, 304(5677), 1623-1627.

Cheah, W.Y., Show, P.L., Chang, J-S., Ling, T.C. and Juan, J.C. 2015. Bio sequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae, Biresour. Technol, 184,190-201, doi: 10.1016/j.biortech.2014.11.026

St. Angelo, D. 2020. Direct Air Capture: Capturing Carbon Dioxide Directly from the Atmosphere. Proceeding: 2020 Virtual AIChE Annual Meeting. Session: Carbon Dioxide Capture Technologies and Their Use.

Keith, D.W., Holmes, Geoffrey, H., St. Angelo, D. and Kenton, H.2018. "A Process for Capturing CO2 from the Atmosphere" (https://doi.org/10.1016/Fj.joule.2018.05.0 06). Joule. 2 (8): 1573–1594.

Christoph, B., Charles, Louise, C., Wurzbacher, J. 2019. "The Role of Direct Air Capture in Mitigation of Anthropogenic Greenhouse Gas Emissions". Frontiers in Climate. 1: 10. doi:10.3389/fclim.2019.00010.

Katharine, G. 2021. How the billionaire space race could be one giant leap for pollution. The Guardian. Retrieved July, 26, 2022.

Christoper, Q.J. and Sheila, S. 2020. The value of hydrogen and carbone capture, storage and utilization in decarbonizing energy: Insights from integrated value chain optimization. Applied Energy, 257: 113936, doi: 10.1016/j. apenergy. 2019.113936

Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. 2012. Carbon Dioxide Capture in Metal–Organic Frameworks. Chem. Rev, 112 (2), 724-781.

Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. 2012. Hydrogen Storage in Metal–Organic Frameworks. Chem. Rev. 112 (2), 782-835.

Miller, MB., Bing, W., Luebke, DR. and Enick, RM. 2012. Solid CO2-philes as potential phase-change physical solvents for CO2. J Supercrit Fluids; 61:212e20.

Kim, SH., Kim, KH. and Hong, SH. 2014. Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas. Angew Chem Int, Ed;53:771e4. 20 Chapter 1.

Kato, Y., Murai, S., Muraok, D., Muramatsu, T. and Saito, S.2013. Evaluation of carbon dioxide absorption by amine based absorbent. Energy Procedia, vol.37: 325-330, doi: 10.1016/j.egypro.2013.05.118

Blondes, M.S. 2019. Making minerals- How growing rocks can helps reduce Carbon Emissions. USGS, Communications and Publishing, Marck 8, 2019.

Gadikota, G. Designing multiphase carbon mineralization pathways for the reactive separation of CO2 and directed synthesis of H2. Nat. Rev. Chem. 4, 78–89 (2020)

Doney, S. 2021. A Research Strategy for Ocean Carbon Dioxide Removal and Sequestration. National Academics. Science, Engineering, Medicine. Desember 8, 2021.

Lebling, K., Northrop, E. and McCormick, C. 2022. Ocean-based Carbon Dioxide Removal: 6 Key Questions, Answered. World Resources Institute, Nov.,15, 2022

Matovic, D. 2010. Biochar as a viable carbon sequestration: Global and Canadian perspective. Energy, doi: 10.1016/j.energy.2010.09.03

Cheng, CH., Lehmann, J. and Engelhard, M. 2008. Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochimia et Cosmochimica Acta, 72, 1598- 1610

Lehmann, C.J., Czimczik, C., Lahird, D. and Sohi, S. 2009. Stability of Biochar in the Soil. In: Lehmann, C.J., Joseph, S. (Eds). Biochar for Environmental management: science and technology, Earthscan.

Madejski, P., Chmiel, K., Subramanian, N. and Kus, T. 2022. Methods and Techniques for CO2 capture Review of Potential Solutions and Applications in Modern Energy Technologies. Energies, 15, 887. Doi: 10.3390/en15030887.

Gupta, D., Kumar, C., Dubey, R. and Fagodiya, R.K. 2020. Role of Biochar in Carbon Sequestration and Greenhouse Gas Mitigation. April 2020, In book: Biochar Applications in Agriculture and Environment Management (pp.141-165), DOI:10.1007/978-3-030-40997-5_7.

Giannetta, B., Plaza, C., Cassetta, M., Mariotto, G., Benavente-Ferraces, I., García-Gil, J.C., Panettieri, M. and Zaccone, C. The effects of biochar on soil organic matter pools are not influenced by climate change. J. Environmental Management, vol. 341:118092, doi:10.1016/jevrment.2023.118092.

Paustian, K., Larson, E., Kent, J., Marx, E. and Swan, A. 2019. Soil C Sequestration as a Biological Negative Emission Strategy. REVIEW article, Front. Clim., 16 October 2019, Sec. Carbon Dioxide Removal Volume-1, 2019, https://doi.org/10.3389/fclim.2019.00008

Ritchie, H. 2020. “What are the safest and cleanest sources of energy?” Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/safest-sources-of-energy' [Online Resource].

Waring, B., Neumann, M., Prentice, I.C., Adams, M., Smith, P. and Siegert, M. 2020. Forests and Decarbonization – Roles of Natural and Planted Forests. Front. For. Glob. Change, 08 May 2020, Sec. Forests and the Atmosphere

Volume 3 - 2020 | https://doi.org/10.3389/ffgc.2020.00058

Sohi, S.P., Krull,E., Lopez-Capel, E. and Bol, R. 2010. Chapter 2. A Review of biochar and its use and Function in Soil, In D.L. Sparks, editor: Advances in agronomi, vol. 105, Burlington: Academic Press, pp: 47-82

Ameloot, N., Graber, E.R., Verheijen, F.G.A. and De Neve, S. 2013. Interactions between biochar stabilility and soil organisms: Review and research needs. E, J, of Soil Science, 64:379-390, doi: 10.1111/ejss. 12064.

Motovic, D. 2011. Biochar as a viable carbon sequestration option: Global and Canadian perspective. Energy, vol. 36, Issue 4: 2011-2015, doi: 10.1016/j.energy.2010.09.031.

Sharma, S.P. 2018. Biochar for Carbon Sequestration: Bioengineering for Sustainable Environment. Omics Technologies and Bio-Engineering, Volume 2: Towards Improving Quality of Life 2018, Pages 365-385, doi: 10.1016/B978-0-12-815870-8.00020-6

Woo, C. 2022. Biochar Land Carbon Sequestration: a benefit or a bother? Enviroment Institute. Published on 31Oktober 2022.

Luo, L., Wang, J., Lv, J., Liu, Z., Sun, T., Yang, Y. and Zhu. Y-G. 2023. Carbon Sequestration Strategies in Soil Using Biochar: Advances, Challenges, and Opportunities. Environ. Sci. Technol. 2023, 57, 31, 11357–11372, doi: 10.1021/acs.est.3c02620.

Wheeler,R.M. 2003. Carbon balance in bioregenerative life support systems: some effects of system closure, waste management, and crop harvest index. Adv Space Res. 31(1): 169-175, doi:10.1016/s0273-1177(02)00742-1

Anon-3, The Carbon Cycle. National Geographic.

Keller, P.S., Merce, R., Obrador, B. & Koschorreck, M. 2021. Global carbon budget of reservoirs is overturned by the quantification of drawdown areas. Nature Geoscience, 14: 402-408.

Winkler, A.J., Myneni, R.B., Alexandrov, G.A. & Brovkin, V. 2019. Earth system models underestimate carbon fixation by plants in the high latitudes. Nature Communications, volume 10, Article number: 885 (2019).

Bobrowsky, M. 2019. Where do fossil fuel come from? NSTA, Oktober 2019.

Putsep, A. 2021. The Carbon Cycle Explained: The Delicate Balance of Carbon in the Atmosphere, Science & Tech, May 4, 2021.

Pacala, S., and Socolow, R., (2004). Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 205: 968 – 972, DOI: 10.1126/science.1100103

Hotinski, R. 2006. The ImpEE project. Stabilisation Wedges: Solving the Climate Problem for the next 50 years with current Technologies. CMI Information Officer, Princeton Environmental Institute, Princeton University, hotinski@princeton.edu. http://www.princeton.edu/-cmi.

Hertsgaard, M.2014. As Uses of Biochar Expand, Climate Benefits Still Uncertain. Environment 360, 21 Jan. 2014.

Bailis, R., Ezzati, M., and Kammen, D.M., (2005). Mortality and greenhouse gas impacts of biomass and petroleum energy futures in Africa, Science, 208, 98 – 103.

Stoyle, A. (2011). Biochar production for carbon sequestration. Bachelor Thesis of science in Chemical Engineering. Shanghai Jiao Tong University, China

Downloads

Download data is not yet available.