Autonomous Navigation for Differential Drive Robots: Grid-Based Fastslam with AMCL in ROS2
Article Sidebar
Main Article Content
Abstract: The research aims to establish a robust autonomous navigation system for differential drive mobile robots, leveraging URDF modeling, SLAM techniques, AMCL, Gazebo simulation, and RViz2 visualization. The central objective is to enable robots to autonomously perceive their surroundings, construct accurate maps, self-localize, and navigate. The integration of URDF defines robot attributes, SLAM produces precise maps, and AMCL ensures reliable localization. Gazebo facilitates testing, while RViz2 provides real-time visualization. The outcome is an efficient navigation system empowering robots to independently navigate intricate environments. Beyond warehousing, applications span service robotics, exploration, and environmental monitoring. The research's significance lies in addressing a fundamental robotics challenge, advancing autonomous mobility across sectors. The approach's efficacy is validated through testing, with potential contributions to robotics research and real-world applications. achieved 97% mapping accuracy with a 5% deviation in simulated environments.
Downloads
Downloads
References
Achour, A., Al-Assaad, H., Dupuis, Y., & El Zaher, M. (2022). Collaborative Mobile Robotics for Semantic Mapping: A Survey. Applied Sciences, 12(20), 10316. https://doi.org/10.3390/app122010316 DOI: https://doi.org/10.3390/app122010316
Baek, J., Park, J., Cho, S., & Lee, C. (2022). 3D Global Localization in the Underground Mine Environment Using Mobile LiDAR Mapping and Point Cloud Registration. Sensors, 22(8), 2873. https://doi.org/10.3390/s22082873 DOI: https://doi.org/10.3390/s22082873
Ben Abdallah, F., Bouali, A., & Meausoone, P.-J. (2023). Autonomous Navigation of a Forestry Robot Equipped with a Scanning Laser. AgriEngineering, 5(1), 1–11. https://doi.org/10.3390/agriengineering5010001 DOI: https://doi.org/10.3390/agriengineering5010001
Cihlar, M., Petr Raichl, Petr Gabrlik, Janousek, J., Marcon, P., Zalud, L., Lazna, T., Karel Michenka, Nohel, J., & Stefek, A. (2023). Simulation of Autonomous Robotic System for Intelligence and Reconnaissance Operations. Springer EBooks, 64–73. https://doi.org/10.1007/978-3-031-31268-7_4 DOI: https://doi.org/10.1007/978-3-031-31268-7_4
Gautam, A., Suraj Mahangade, Vishal Indal Gupta, Madan, R., & Arya, K. (2021). An experimental comparison of visual SLAM systems. https://doi.org/10.1109/iria53009.2021.9588784 DOI: https://doi.org/10.1109/IRIA53009.2021.9588784
Ge, G., Zhang, Y., & Zhi Ping Xu. (2022). An Improved Single Robot SLAM Algorithm Based on Particle Filter. 894–902. https://doi.org/10.1007/978-981-19-6901-0_92 DOI: https://doi.org/10.1007/978-981-19-6901-0_92
Hampton, B., Akram Al-Hourani, Ristic, B., & Moran, B. (2017). RFS-SLAM robot: An experimental platform for RFS based occupancy-grid SLAM. https://doi.org/10.23919/icif.2017.8009744 DOI: https://doi.org/10.23919/ICIF.2017.8009744
Huber, L., Slotine, J.-J. E., & Billard, A. (2023). Fast Obstacle Avoidance Based on Real-Time Sensing. IEEE Robotics and Automation Letters, 8(3), 1375–1382. https://doi.org/10.1109/lra.2022.3232271 DOI: https://doi.org/10.1109/LRA.2022.3232271
Hyun Chul Roh, Chang Kyung Sung, Min Tae Kang, & Myung Jin Chung. (2011). Fast SLAM using polar scan matching and particle weight-based occupancy grid map for mobile robot. https://doi.org/10.1109/urai.2011.6146004 DOI: https://doi.org/10.1109/URAI.2011.6146004
Jesus, R., Gonzalez, C., & Prado, R. (2022). Autonomous Navigation of a Four-Wheeled Robot in a Simulated Blueberry Farm Environment. 2022 IEEE ANDESCON. https://doi.org/10.1109/andescon56260.2022.9989865 DOI: https://doi.org/10.1109/ANDESCON56260.2022.9989865
K. K. P. Gayashani, U.U. Samantha Rajapaksha, & Chandimal Jayawardena. (2022). Moving a Robot in Unknown Areas Without Collision Using Robot Operating System. https://doi.org/10.1109/icarc54489.2022.9754138 DOI: https://doi.org/10.1109/ICARC54489.2022.9754138
Kandith Wongsuwan, & Kanjanapan Sukvichai. (2017). Generalizing corrective gradient refinement in RBPF for occupancy grid LIDAR SLAM. https://doi.org/10.1109/robio.2017.8324465 DOI: https://doi.org/10.1109/ROBIO.2017.8324465
Khan, M., Hussian, D., Khan, S., Rehman, F., Anas Bin Aqeel, & Umar Shahbaz Khan. (2021). Implementation of SLAM by using a Mobile Agribot in a Simulated Indoor Environment in Gazebo. https://doi.org/10.1109/icrai54018.2021.9651448 DOI: https://doi.org/10.1109/ICRAI54018.2021.9651448
Li, S.-A., Chou, L.-H., Chang, T.-C., Wong, C.-C., & Hsuan Ming Feng. (2022). Design and implementation of an autonomous service robot based on cyber physical modeling systems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 095440542210803-095440542210803. https://doi.org/10.1177/09544054221080330 DOI: https://doi.org/10.1177/09544054221080330
Li, Y., He, J., Chen, C., & Guan, X. (2023). Intelligent Physical Attack Against Mobile Robots With Obstacle-Avoidance. IEEE Transactions on Robotics, 39(1), 253–272. https://doi.org/10.1109/tro.2022.3201394 DOI: https://doi.org/10.1109/TRO.2022.3201394
Li, Y., & Liu, Y. (2020). Vision-based Obstacle Avoidance Algorithm for Mobile Robot. 2020 Chinese Automation Congress (CAC). https://doi.org/10.1109/cac51589.2020.9326906 DOI: https://doi.org/10.1109/CAC51589.2020.9326906
Lin, R., Dong, S., Zhao, W., & Cheng, Y. (2023). Ultra-wide-band-based adaptive Monte Carlo localization for kidnap recovery of mobile robot. International Journal of Advanced Robotic Systems, 20(2), 172988062311639-172988062311639. https://doi.org/10.1177/17298806231163950 DOI: https://doi.org/10.1177/17298806231163950
M. Adhipatiunus, R. R. A. Setiadji, Widyaputra, R. M., & Widyawardana Adiprawita. (2021). Implementation of informed rapidly exploring random tree * on a pre-mapped Octomap generated by real time appearance-based map. Nucleation and Atmospheric Aerosols. https://doi.org/10.1063/5.0060189 DOI: https://doi.org/10.1063/5.0060189
Mantha, B. R. K., & Garcia de Soto, B. (2022). Investigating the Fiducial Marker Network Characteristics for Autonomous Mobile Indoor Robot Navigation Using ROS and Gazebo. Journal of Construction Engineering and Management, 148(10). https://doi.org/10.1061/(asce)co.1943-7862.0002378 DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0002378
Marshal Revanth, C., Saravanakumar, D., Jegadeeshwaran, R., & Sakthivel, G. (2020). Simultaneous Localization and Mapping of Mobile Robot using GMapping Algorithm. 2020 IEEE International Symposium on Smart Electronic Systems (ISES) (Formerly INiS). https://doi.org/10.1109/ises50453.2020.00024 DOI: https://doi.org/10.1109/iSES50453.2020.00024
Nour Ayman Abujabal, Raouf Fareh, Sinan, S., Baziyad, M., & Maamar Bettayeb. (2023). A comprehensive review of the latest path planning developments for multi-robot formation systems. Robotica, 41(7), 2079–2104. https://doi.org/10.1017/s0263574723000322 DOI: https://doi.org/10.1017/S0263574723000322
Nwankwo, L., Fritze, C., Bartsch, K., & Rueckert, E. (2023). ROMR: A ROS-based open-source mobile robot. HardwareX, 14, e00426. https://doi.org/10.1016/j.ohx.2023.e00426 DOI: https://doi.org/10.1016/j.ohx.2023.e00426
Oussama El Hamzaoui, & Steux, B. (2010). A fast scan matching for grid-based laser SLAM using streaming SIMD extensions. https://doi.org/10.1109/icarcv.2010.5707898 DOI: https://doi.org/10.1109/ICARCV.2010.5707898
Palmani Duraisamy, & Natarajan, S. P. (2023). Multi-Sensor Fusion Based Off-Road Drivable Region Detection and Its ROS Implementation. https://doi.org/10.1109/wispnet57748.2023.10134440 DOI: https://doi.org/10.1109/WiSPNET57748.2023.10134440
Pedrosa, E., Pereira, A., & Lau, N. (2020). Fast Grid SLAM Based on Particle Filter with Scan Matching and Multithreading. https://doi.org/10.1109/icarsc49921.2020.9096191 DOI: https://doi.org/10.1109/ICARSC49921.2020.9096191
Prasad, A. O., Mishra, P., Jain, U., Pandey, A., Sinha, A., Yadav, A. S., Kumar, R., Sharma, A., Kumar, G., Hazim Salem, K., Sharma, A., & Dixit, A. K. (2023). Design and development of software stack of an autonomous vehicle using robot operating system. Robotics and Autonomous Systems, 161, 104340. https://doi.org/10.1016/j.robot.2022.104340 DOI: https://doi.org/10.1016/j.robot.2022.104340
Qu, P., Su, C., Wu, H., Xu, X., Gao, S., & Zhao, X. (2021). Mapping performance comparison of 2D SLAM algorithms based on different sensor combinations. Journal of Physics: Conference Series, 2024(1), 012056. https://doi.org/10.1088/1742-6596/2024/1/012056 DOI: https://doi.org/10.1088/1742-6596/2024/1/012056
Quang, H. D., Manh, T. N., Manh, C. N., Tien, D. P., Van, M. T., Tien, K. N., & Duc, D. N. (2020). An Approach to Design Navigation System for Omnidirectional Mobile Robot Based on ROS. International Journal of Mechanical Engineering and Robotics Research, 1502–1508. https://doi.org/10.18178/ijmerr.9.11.1502-1508 DOI: https://doi.org/10.18178/ijmerr.9.11.1502-1508
Rajesh Kannan Megalingam, Naick, V. S., Manaswini Motheram, Jahnavi Yannam, Nikhil Chowdary Gutlapalli, & Vinu Sivanantham. (2023). Robot operating system based autonomous navigation platform with human robot interaction. TELKOMNIKA Telecommunication Computing Electronics and Control, 21(3), 675–675. https://doi.org/10.12928/telkomnika.v21i3.24257 DOI: https://doi.org/10.12928/telkomnika.v21i3.24257
Salim Azak, & Erdogan, E. (2018). Performance evaluation of the grid-based FastSLAM in V-REP using MATLAB. https://doi.org/10.1109/tcset.2018.8336202 DOI: https://doi.org/10.1109/TCSET.2018.8336202
Satyam Raikwar, Yu, H., & Herlitzius, T. (2023). 2D LIDAR SLAM Localization System for a Mobile Robotic Platform in GPS Denied Environment. Journal of Biosystems Engineering, 48(2), 123–135. https://doi.org/10.1007/s42853-023-00176-y DOI: https://doi.org/10.1007/s42853-023-00176-y
Serhat Karaçam, & Tuğba Selcen Navruz. (2022). An improved adaptive FastSLAM algorithm with time‐varying noise estimator. Asian Journal of Control, 25(4), 2617–2627. https://doi.org/10.1002/asjc.2968 DOI: https://doi.org/10.1002/asjc.2968
Singh, A. V., Agrawal, Y., Gupta, R., Kumar, A., & Bohara, V. A. (2023, January 1). ANROLA: Autonomous Navigation with ROS and Laser Odometry. IEEE Xplore. https://doi.org/10.1109/COMSNETS56262.2023.10041368 DOI: https://doi.org/10.1109/COMSNETS56262.2023.10041368
Song, X. (2022). Research and design of robot obstacle avoidance strategy based on multi-sensor and fuzzy control. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). https://doi.org/10.1109/icdsca56264.2022.9988357 DOI: https://doi.org/10.1109/ICDSCA56264.2022.9988357
Tripicchio, P., D’Avella, S., & Unetti, M. (2022). Efficient localization in warehouse logistics: a comparison of LMS approaches for 3D multilateration of passive UHF RFID tags. The International Journal of Advanced Manufacturing Technology, 120(7-8), 4977–4988. https://doi.org/10.1007/s00170-022-09018-1 DOI: https://doi.org/10.1007/s00170-022-09018-1
Van, T., Ngô Mạnh Tiến, Nguyễn Mạnh Cường, Thi, H., & Nguyen Duc Duy. (2021). Constructing an Intelligent Navigation System for Autonomous Mobile Robot Based on Deep Reinforcement Learning. Springer EBooks, 251–261. https://doi.org/10.1007/978-3-030-76620-7_22 DOI: https://doi.org/10.1007/978-3-030-76620-7_22
Volgina, A. D., D. Kirillov, Kravtsov, A. N., Dyakonova, S. S., & Kanev, A. (2023). The Robot-Guide for Indoor Navigation. https://doi.org/10.1109/reepe57272.2023.10086707 DOI: https://doi.org/10.1109/REEPE57272.2023.10086707
Wang, P., Chen, N., Fusheng Zha, Guo, W., & Li, M. (2018). Research on Adaptive Monte Carlo Location Algorithm Aided by Ultra-Wideband Array. https://doi.org/10.1109/wcica.2018.8630520 DOI: https://doi.org/10.1109/WCICA.2018.8630520
Xiang, Y., Li, D., Su, T., Zhou, Q., Brach, C., Mao, S. S., & Geimer, M. (2022). Where Am I? SLAM for Mobile Machines on a Smart Working Site. Vehicles, 4(2), 529–552. https://doi.org/10.3390/vehicles4020031 DOI: https://doi.org/10.3390/vehicles4020031
Yagfarov, R., Ivanou, M., & Afanasyev, I. (2018). Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV). https://doi.org/10.1109/icarcv.2018.8581131 DOI: https://doi.org/10.1109/ICARCV.2018.8581131
Yan, H., Du, C., Liu, Y., Yang, X., Du, H., Han, P., Yu, Y., Xu, Y., & Sun, W. (2023). Automatic Parking System for Multi-vehicle in the Autonomous Driving Platform of the DeepRacer. Lecture Notes in Electrical Engineering, 537–553. https://doi.org/10.1007/978-981-99-1365-7_40 DOI: https://doi.org/10.1007/978-981-99-1365-7_40
Zhang, G., & Liu Bo Liu. (2023). Implementation and optimization of ORB-SLAM2 algorithm based on ROS on mobile robots. https://doi.org/10.1117/12.2675118 DOI: https://doi.org/10.1117/12.2675118
Vega Torres, M. A., Braun, A., & Borrmann, A. (2022). Occupancy Grid Map to Pose Graph-based Map: Robust BIM-based 2D-LiDAR Localization for Lifelong Indoor Navigation in Changing and Dynamic Environments. In E. Hjelseth, S. F. Sujan, & R. Scherer (Eds.), eWork and eBusiness in Architecture, Engineering and Construction: ECPPM 2022 (pp. 1-8). CRC Press. https://doi.org/10.48550/arXiv.2308.05443.
Azzam, R., Taha, T., Huang, S., & Zweiri, Y. (2020). Feature-based visual simultaneous localization and mapping: a survey. SN Applied Sciences, 2(2). https://doi.org/10.1007/s42452-020-2001-3 DOI: https://doi.org/10.1007/s42452-020-2001-3
Peng, G., Zheng, W., Lu, Z., Liao, J., Hu, L., Zhang, G., & He, D. (2018). An Improved AMCL Algorithm Based on Laser Scanning Match in a Complex and Unstructured Environment. Complexity, 2018, 1–11. https://doi.org/10.1155/2018/2327637 DOI: https://doi.org/10.1155/2018/2327637
Wurm, K. M., Stachniss, C., & Grisetti, G. (2010). Bridging the gap between feature- and grid-based SLAM. Robotics and Autonomous Systems, 58(2), 140–148. https://doi.org/10.1016/j.robot.2009.09.009 DOI: https://doi.org/10.1016/j.robot.2009.09.009
Zou, H., Chen, C.-L., Li, M., Yang, J., Zhou, Y., Xie, L., & Spanos, C. J. (2020). Adversarial Learning Enabled Automatic WiFi Indoor Radio Map Construction and Adaptation with Mobile Robot. IEEE Internet of Things Journal, 1–1. https://doi.org/10.1109/jiot.2020.2979413 DOI: https://doi.org/10.1109/JIOT.2020.2979413
Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping: Part I. IEEE Robotics & Automation Magazine, 13(2), 99-110. DOI: https://doi.org/10.1109/MRA.2006.1638022
Bailey, T., & Durrant-Whyte, H. (2006). Simultaneous localization and mapping (SLAM): Part II. IEEE Robotics & Automation Magazine, 13(3), 108-117. DOI: https://doi.org/10.1109/MRA.2006.1678144
Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. MIT press.
Leonard, J. J., & Durrant-Whyte, H. F. (1991). Simultaneous map building and localization for an autonomous mobile robot. IEEE/RSJ International Workshop on Intelligent Robots and Systems, 3(1), 1442-1447. DOI: https://doi.org/10.1109/IROS.1991.174711
Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., & Leonard, J. J. (2016). Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 32(6), 1309-1332. DOI: https://doi.org/10.1109/TRO.2016.2624754
Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Transactions on Robotics, 23(1), 34-46. DOI: https://doi.org/10.1109/TRO.2006.889486
Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., & Burgard, W. (2011). g2o: A general framework for graph optimization. IEEE International Conference on Robotics and Automation (ICRA), 3607-3613. DOI: https://doi.org/10.1109/ICRA.2011.5979949
Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007). MonoSLAM: Real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 1052-1067. DOI: https://doi.org/10.1109/TPAMI.2007.1049

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in our journal are licensed under CC-BY 4.0, which permits authors to retain copyright of their work. This license allows for unrestricted use, sharing, and reproduction of the articles, provided that proper credit is given to the original authors and the source.